【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測(cè)量被池塘相隔的兩棵樹A,B的距離,他們?cè)O(shè)計(jì)了如圖的測(cè)量方案:從樹A沿著垂直于AB的方向走到E,再?gòu)?/span>E沿著垂直于AE的方向走到FCAE上一點(diǎn),其中4位同學(xué)分別測(cè)得四組數(shù)據(jù):①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADB,FB.其中能根據(jù)所測(cè)數(shù)據(jù)求得A,B兩樹距離的有( )

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)三角函數(shù)的定義及相似三角形的判定定理及性質(zhì)對(duì)各選項(xiàng)逐一判斷即可得答案.

∵已知∠ACB的度數(shù)和AC的長(zhǎng),

∴利用∠ACB的正切可求出AB的長(zhǎng),故①能求得A,B兩樹距離,

AB//EF,

∴△ADB△EDF

,故②能求得A,B兩樹距離,

設(shè)ACx

ADCD+x,AB,AB

∵已知CD,∠ACB,∠ADB,

∴可求出x,然后可得出AB,故③能求得A,B兩樹距離,

已知∠F,∠ADBFB不能求得A,B兩樹距離,故④求得A,B兩樹距離,

綜上所述:求得A,B兩樹距離的有①②③,共3個(gè),

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸相交于AB兩點(diǎn),與y軸相交于點(diǎn)C,且點(diǎn)B與點(diǎn)C的坐標(biāo)分別為B(3,0)C(0,3),點(diǎn)M是拋物線的頂點(diǎn).

1)求二次函數(shù)的關(guān)系式;

2)點(diǎn)P為線段MB上一個(gè)動(dòng)點(diǎn),過點(diǎn)PPDx軸于點(diǎn)D.若ODm,△PCD的面積為S,

①求Sm的函數(shù)關(guān)系式,寫出自變量m的取值范圍.

②當(dāng)S取得最值時(shí),求點(diǎn)P的坐標(biāo);

3)在MB上是否存在點(diǎn)P,使△PCD為直角三角形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ACB45°,AEBC于點(diǎn)E,過點(diǎn)CCFAB于點(diǎn)F,交AE于點(diǎn)M.點(diǎn)N在邊BC上,且AMCN,連結(jié)DN

1)若AB,AC4,求BC的長(zhǎng);

2)求證:AD+AMDN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生的藝術(shù)特長(zhǎng)發(fā)展情況,某校決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動(dòng)項(xiàng)目中,你最喜歡哪一項(xiàng)活動(dòng)(每人只限一項(xiàng))”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:

1)扇形統(tǒng)計(jì)圖中“戲曲”部分對(duì)應(yīng)的扇形的圓心角為   度;

2)若在“舞蹈、樂器、聲樂、戲曲”項(xiàng)目中任選兩項(xiàng)成立課外興趣小組,請(qǐng)用列舉法求恰好選中“舞蹈、聲樂”這兩項(xiàng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是拋物線y=﹣x2+x+2在第一象限上的點(diǎn),過點(diǎn)P分別向x軸和y軸引垂線,垂足分別為A,B,則四邊形OAPB周長(zhǎng)的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生會(huì)要舉辦一個(gè)校園書畫藝術(shù)展覽會(huì),為國(guó)慶獻(xiàn)禮,小華和小剛準(zhǔn)備將長(zhǎng)AD400cm,寬AB130cm的矩形作品四周鑲上彩色紙邊裝飾,如圖所示,兩人在設(shè)計(jì)時(shí)要求內(nèi)外兩個(gè)矩形相似,矩形作品面積是總面積的,他們一致認(rèn)為上下彩色紙邊要等寬,左右彩色紙邊要等寬,這樣效果最好,請(qǐng)你幫助他們?cè)O(shè)計(jì)彩色紙邊寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線

(1)求拋物線的對(duì)稱軸;

(2)當(dāng)時(shí),設(shè)拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),頂點(diǎn)為,若為等邊三角形,求的值;

(3)(其中)且垂直軸的直線與拋物線交于兩點(diǎn).若對(duì)于滿足條件的任意值,線段的長(zhǎng)都不小于1,結(jié)合函數(shù)圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC是⊙O的直徑,點(diǎn)B在圓周上(不與A、C重合),點(diǎn)D在AC的延長(zhǎng)線上,連接BD交⊙O于點(diǎn)E,若∠AOB=3∠ADB,則( )

A. DE=EB B. DE=EB C. DE=DO D. DE=OB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)有一半徑為8m的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線.在距水池中心3m處達(dá)到最高,高度為5m,且各個(gè)方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.

1)求水柱所在拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;

2)王師傅在噴水池維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8m的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?

查看答案和解析>>

同步練習(xí)冊(cè)答案