【題目】下列計算正確的是(  )

A. a6÷2a22a3 B. (﹣ xy32=﹣x2y5

C. (﹣3a2(﹣2ab2)=6a3b2 D. (﹣50=﹣5

【答案】C

【解析】

根據(jù)單項式除以單項式,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘;零指數(shù)冪:a01a≠0);單項式與單項式相乘,把他們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式進行計算即可.

解:Aa6÷2a2a4,故原題計算錯誤;

B、(﹣xy32x2y6,故原題計算錯誤;

C、(﹣3a2(﹣2ab2)=6a3b2,故原題計算正確;

D、(﹣501,故原題計算錯誤;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,OA4,OC8,四邊形ABCO是平行四邊形.

1)求點B的坐標(biāo)及四邊形ABCO的面積;

2)若點P從點C2單位長度/秒的速度沿CO方向移動,同時點Q從點O1單位長度/秒的速度沿OA方向移動,設(shè)移動的時間為t秒,△AQB△BPC的面積分別記為,,四邊形QBPO的面積是否發(fā)生變化,若不變,求出并證明你的結(jié)論,若變化,求出變化的范圍.

3)在(2)的條件下,是否存在某個時同,使,若存在,求出t的值,若不存在,試說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題:

1)如圖1,若ABCD,則∠B+D=∠E,你能說明理由嗎?

2)反之,若∠B+D=∠E,直線AB與直線CD有什么位置關(guān)系?簡要說明理由;

3)若將點E移至圖2的位置,此時∠B、∠D、∠E之間有什么關(guān)系?直接寫出結(jié)論;

4)若將點E移至圖3的位置,此時∠B、∠D、∠E之間有什么關(guān)系?直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(知識生成)我們已經(jīng)知道,通過計算幾何圖形的面積可以表示一些代數(shù)恒等式.例如圖1可以得到(a+b2a2+2ab+b2,基于此,請解答下列問題:

1)根據(jù)圖2,寫出一個代數(shù)恒等式:   

2)利用(1)中得到的結(jié)論,解決下面的問題:若a+b+c10,ab+ac+bc35,則a2+b2+c2   

3)小明同學(xué)用圖3x張邊長為a的正方形,y張邊長為b的正方形,z張寬、長分別為a、b的長方形紙片拼出一個面積為(2a+b)(a+2b)長方形,則x+y+z   

(知識遷移)(4)事實上,通過計算幾何圖形的體積也可以表示一些代數(shù)恒等式,圖4表示的是一個邊長為x的正方體挖去一個小長方體后重新拼成一個新長方體,請你根據(jù)圖4中圖形的變化關(guān)系,寫出一個代數(shù)恒等式:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年端午節(jié)前夕,某商場投入13800元資金購進甲、乙兩種商品共500件,兩種商品的成本價和銷售價如下表所示:

商品 單價(元/件)

成本價

銷售價

24

36

33

48

1)該商場購進兩種商品各多少件?

2)這批商品全部銷售完后,該商場共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,,垂足為點H,若,,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,其對稱軸為直線x=﹣1,給出下列結(jié)果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.
則正確的結(jié)論是( )

A.(1)(2)(3)(4)
B.(2)(4)(5)
C.(2)(3)(4)
D.(1)(4)(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點,O是形內(nèi)一點,若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別為6、7、8,四邊形DHOG面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線與直線的圖象如圖所示,當(dāng)y1≠y2時,取y1 , y2中的較大值記為N;當(dāng)y1=y2時,N=y1=y2 . 則下列說法:
①當(dāng)0<x<2時,N=y1;
②N隨x的增大而增大的取值范圍是x<0;
③取y1 , y2中的較小值記為M,則使得M大于4的x值不存在;
④若N=2,則x=2﹣ 或x=1.
其中正確的有( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案