按指定的方法解方程:
(1)2x2-1=4x(用配方法);
(2)x-5=4(x-5)2(因式分解法).
分析:(1)用配方法解方程,首先移項(xiàng),把常數(shù)項(xiàng)移到等號的右邊,再將二次項(xiàng)系數(shù)化為1,然后在方程的左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方,即可使左邊變形成完全平方式,右邊是常數(shù),直接開方即可求解;
(2)用提公因式法解方程,首先移項(xiàng),使方程右邊為0,然后提取公因式x-5,將方程轉(zhuǎn)化為兩個式子的積是0的形式,從而轉(zhuǎn)化為兩個一元一次方程求解.
解答:(1)解:移項(xiàng),得2x2-4x=1,
方程兩邊都除以2,得x2-2x=
1
2
,
配方,得(x-1)2=
3
2

所以x-1=±
6
2
,
解得x1=1+
6
2
,x2=1-
6
2
;

(2)解:移項(xiàng),得4(x-5)2-(x-5)=0,
因式分解,得(x-5)[4(x-5)-1]=0,
即(x-5)(4x-21)=0,
所以(x-5)=0或(4x-21)=0,
x1=5,x2=
21
4
點(diǎn)評:此題考查了運(yùn)用配方法、因式分解法解一元二次方程,解題時(shí)要注意解題步驟的準(zhǔn)確應(yīng)用.選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).因式分解法是解一元二次方程的一種簡便方法,要會靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

按指定的方法解方程:
(1)(x+2)2-25=0(直接開平方法);   (2)x2+4x-5=0(配方法);
(3)x2+3=2
3
x(因式分解法);     (4)2x2-7x+1=0(公式法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

按指定的方法解方程
(1)(x+9)2-25=0(直接開平方法)          
(2)x2-6x-16=0(配方法)
(3)3x(x-1)=2(x-1)(因式分解法)
(4)2x2-7x+2=0(公式法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

按指定的方法解方程:
(1)9(x-1)2-5=0(直接開平方法)
(2)2x2-4x-8=0(配方法)
(3)6x2-5x-2=0(公式法)
(4)(x+1)2=2x+2(因式分解法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

按指定的方法解方程
(1)(x+2)2-25=0(直接開平方法) 
(2)2t2-6t+3=0(配方法)
(3)3x2+5(2x+1)=0(用公式法)

查看答案和解析>>

同步練習(xí)冊答案