給出下列命題:
①若a>b,則ac2>bc2;②若ab>c,則b>
c
a
;③-3a>2a,則a<0;④若a<b,則a-c<b-c.
其中正確命題的序號(hào)是( 。
A、③④B、①③C、①②D、②④
分析:根據(jù)不等式的基本性質(zhì)分別判斷即可求解.
解答:解:①若a>b,則ac2>bc2,當(dāng)c=0時(shí),不成立,故錯(cuò)誤;
②若ab>c,則b>
c
a
,當(dāng)a<0時(shí),不等號(hào)方向應(yīng)改變?yōu)閎<
c
a
,故錯(cuò)誤;
③-3a>2a,則a<0,正確;
④若a<b,則a-c<b-c,正確.
故選A.
點(diǎn)評(píng):主要考查了不等式的基本性質(zhì).
“0”是很特殊的一個(gè)數(shù),因此,解答不等式的問(wèn)題時(shí),應(yīng)密切關(guān)注“0”存在與否,以防掉進(jìn)“0”的陷阱.
不等式的基本性質(zhì):
(1)不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變.
(2)不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變.
(3)不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在矩形ABCD中,有一個(gè)菱形BFDE(點(diǎn)E,F(xiàn)分別在線段AB,CD上),記它們的面積分別為SABCD和SBFDE,現(xiàn)給出下列命題
①若
SABCD
SBFDE
=
2+
3
2
,則tan∠EDF=
3
3
;②若DE2=BD•EF,則DF=2AD.則( 。
A、①是真命題,②是真命題
B、①是真命題,②是假命題
C、①是假命題,②是真命題
D、①是假命題,②是假命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•資陽(yáng))給出下列命題:①若m=n+1,則1-m2+2mn-n2=0;②對(duì)于函數(shù)y=kx+b(k≠0),若y隨x的增大而增大,則其圖象不能同時(shí)經(jīng)過(guò)第二、四象限;③若a、b(a≠b)為2、3、4、5這四個(gè)數(shù)中的任意兩個(gè),則滿足2a-b>4的有序數(shù)組(a,b)共有5組.其中所有正確命題的序號(hào)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州)在一個(gè)圓中,給出下列命題,其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①對(duì)于實(shí)數(shù)u,v,定義一種運(yùn)算“*“為:u*v=uv+v.若關(guān)于x的方程x*(a*x)=-
1
4
沒(méi)有實(shí)數(shù)根,則滿足條件的實(shí)數(shù)a的取值范圍是0<a<1;
②設(shè)直線kx+(k+1)y-1=0(k為正整數(shù))與坐標(biāo)軸所構(gòu)成的直角三角形的面積為Sk,則S1+S2+S3+…+S2008=
1004
2009
;
③函數(shù)y=-
1
x2
+
3
x
的最大值為2;
④甲、乙、丙3位同學(xué)選修課程,從4門(mén)課程中,甲選修2門(mén),乙、丙各選修3門(mén),則不同的選修方案共有48種.
其中真命題的個(gè)數(shù)有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案