【題目】某超市對進(jìn)貨價為10元/千克的某種蘋果的銷售情況進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)每天銷售量y(千克)與銷售價x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.則最大利潤是( 。
A.180B.220C.190D.200
【答案】D
【解析】
由圖象過點(diǎn)(20,20)和(30,0),利用待定系數(shù)法求直線解析式,然后根據(jù)每天利潤=每千克的利潤×銷售量.據(jù)此列出表達(dá)式,運(yùn)用函數(shù)性質(zhì)解答.
設(shè)y=kx+b,由圖象可知,,
解得:,
∴y=﹣2x+60;
設(shè)銷售利潤為p,根據(jù)題意得,p=(x﹣10)y
=(x﹣10)(﹣2x+60)
=﹣2x2+80x﹣600,
∵a=﹣2<0,
∴p有最大值,
當(dāng)x=﹣=20時,p最大值=200.
即當(dāng)銷售單價為20元/千克時,每天可獲得最大利潤200元,
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“勤勞”是中華民族的傳統(tǒng)美德,學(xué)校要求同學(xué)們在家里幫助父母做一些力所能及的家務(wù).在本學(xué)期開學(xué)初,小穎同學(xué)隨機(jī)調(diào)查了部分同學(xué)寒假在家做家務(wù)的總時間,設(shè)被調(diào)查的每位同學(xué)寒假在家做家務(wù)的總時間為x小時,將做家務(wù)的總時間分為五個類別:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次共調(diào)查了 名學(xué)生;
(2)請根據(jù)以上信息直接在答題卡中補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中m的值是 ,類別D所對應(yīng)的扇形圓心角的度數(shù)是 度;
(4)若該校有800名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,請你估計(jì)該校有多少名學(xué)生寒假在家做家務(wù)的總時間不低于20小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4與x軸交于點(diǎn)A(﹣2,0)和B(4,0)、與y軸交于點(diǎn)C.點(diǎn)M,Q分別從點(diǎn)A,B以每秒1個單位長度的速度沿x軸同時出發(fā)相向而行.當(dāng)點(diǎn)M到達(dá)原點(diǎn)時,點(diǎn)Q立刻掉頭并以每秒個單位長度的速度向點(diǎn)B方向移動,當(dāng)點(diǎn)M到達(dá)拋物線的對稱軸時,兩點(diǎn)停止運(yùn)動.過點(diǎn)M的直線l⊥x軸,交AC或BC于點(diǎn)P.當(dāng)t=_____時,△APQ的面積S有最大值,為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用無刻度直尺作圖(輔助線請畫虛線)
(1)如圖1,在ABCD中畫一條直線平分周長;
(2)如圖2,在⊙O中,AB為⊙O內(nèi)的一條弦,D為優(yōu)弧AB的中點(diǎn),C為優(yōu)弧AB的一動點(diǎn),畫出∠ACB的平分線;
(3)如圖3,在正方形ABCD中,E為CB上的任意一點(diǎn),在AB上截取一點(diǎn)F,使得BF=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一直線經(jīng)過原點(diǎn)O,且與反比例函數(shù)y=(k>0)相交于點(diǎn)A、點(diǎn)B,過點(diǎn)A作AC⊥y軸,垂足為C,連接BC.若△ABC面積為8,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+c(a≠0)與y軸交于點(diǎn)A,與x軸交于B,C兩點(diǎn)(點(diǎn)C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4,現(xiàn)將拋物線沿BA方向平移,平移后的拋物線過點(diǎn)C時,與x軸的另一交點(diǎn)為E,其頂點(diǎn)為F.
(1)求a、c的值;
(2)連接OF,試判斷△OEF是否為等腰三角形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com