【題目】數(shù)學(xué)概念

在兩個(gè)等腰三角形中,如果其中一個(gè)三角形的底邊長(zhǎng)和底角的度數(shù)分別等于另一個(gè)三角形的腰長(zhǎng)和頂角的度數(shù),那么稱這兩個(gè)等腰三角形互為姊妹三角形.

概念理解

1)如圖①,在ABC中,ABAC,請(qǐng)用直尺和圓規(guī)作出它的姊妹三角形(保留作圖痕跡,不寫作法).

特例分析

2)①在ABC中,ABAC,∠A30°,,求它的姊妹三角形的頂角的度數(shù)和腰長(zhǎng);

②如圖②,在ABC中,ABAC,DAC上一點(diǎn),連接BD.若ABCABD互為姊妹三角形,且ABC∽△BCD,則∠A   °

深入研究

3)下列關(guān)于姊妹三角形的結(jié)論:

①每一個(gè)等腰三角形都有姊妹三角形;

②等腰三角形的姊妹三角形是銳角三角形;

③如果兩個(gè)等腰三角形互為姊妹三角形,那么這兩個(gè)三角形可能全等;

④如果一個(gè)等腰三角形存在兩個(gè)不同的姊妹三角形,那么這兩個(gè)三角形也一定互為姊妹三角形.

其中所有正確結(jié)論的序號(hào)是   

【答案】1)見解析;(2)①ABC的姊妹三角形的頂角為75°時(shí),腰長(zhǎng)為;頂角為120°時(shí),腰長(zhǎng)為;②∠A 36 °.(3)所有正確結(jié)論的序號(hào)是 ①③ 

【解析】

1)根據(jù)姊妹三角形的定義畫出圖形即可;

2)①過點(diǎn)BBGAC,垂足為G.設(shè)BGx,想辦法構(gòu)建方程解決問題即可;

②首先證明∠A=∠ABD,∠BDC=∠C=∠ABC,設(shè)∠Ax,利用三角形內(nèi)角和定理構(gòu)建方程即可解決問題;

3)根據(jù)姊妹三角形的定義一一判斷即可.

1)如圖,DEF即為所求.

2)①設(shè)ABC的姊妹三角形為DEF,且DEDF

∵在ABC中,ABAC,∠A30°BC,

∴∠B=∠C75°,

過點(diǎn)BBGAC,垂足為G.設(shè)BGx,

ABAC2x,AGx,

CGACAG2xx=(2x

RtBGC中,BG2+CG2BC2,

x2+22x2=(2,

x1,

ABAC2

第一種情形:∠D=∠ABC75°,

DEDFBC

第二種情形:當(dāng)∠E=∠A30°時(shí),∠EDF120°

EFAB2

過點(diǎn)DDHEF,垂足為H

DEDF,∴EHEF1

ED,

∴△ABC的姊妹三角形的頂角為75°時(shí),腰長(zhǎng)為;頂角為120°時(shí),腰長(zhǎng)為;

②如圖②中,

∵△ABC∽△BCD,

∴∠A=∠CBD,∠C=∠BDC=∠ABC,

∵△ABCABD互為姊妹三角形,

BCBD,

∵∠DBC=∠A+ABD,∠C=∠ABC=∠DBC+ABD,

∴∠A=∠ABD,設(shè)∠Ax,則∠DBCx,∠BDC=∠C2x

5x180°,

x36°

故答案為:36;

3)①每一個(gè)等腰三角形都有姊妹三角形;正確.

②等腰三角形的姊妹三角形是銳角三角形;錯(cuò)誤.

③如果兩個(gè)等腰三角形互為姊妹三角形,那么這兩個(gè)三角形可能全等;正確.

④如果一個(gè)等腰三角形存在兩個(gè)不同的姊妹三角形,那么這兩個(gè)三角形也一定互為姊妹三角形.錯(cuò)誤.

故答案為①③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),若,且.

1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;

2)若點(diǎn)x軸上一點(diǎn),是等腰三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一元二次方程ax2+bx+c0a0),下列說法:

b2,則方程ax2+bx+c0一定有兩個(gè)相等的實(shí)數(shù)根;

若方程ax2+bx+c0有兩個(gè)不等的實(shí)數(shù)根,則方程x2bx+ac0也一定有兩個(gè)不等的實(shí)數(shù)根;

c是方程ax2+bx+c0的一個(gè)根,則一定有ac+b+10成立;

x0是一元二次方程ax2+bx+c0的根,則b24ac=(2ax0+b2,其中正確的(  )

A.只有①②③B.只有①②④C.①②③④D.只有③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是等腰三角形,,,點(diǎn)在邊上,點(diǎn)在邊上(點(diǎn)不與所在線段端點(diǎn)重合),,連接,射線,延長(zhǎng)交射線于點(diǎn),點(diǎn)在直線上,且

1)如圖,當(dāng)時(shí),請(qǐng)直接寫出的關(guān)系:_____;的位置關(guān)系:_____

2)當(dāng),其他條件不變時(shí),的度數(shù)是多少?(用含的代數(shù)式表示)

3)若是等邊三角形,,邊上的三等分點(diǎn),直線與直線交于點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級(jí)男生共250人,現(xiàn)隨機(jī)抽取了部分九年級(jí)男生進(jìn)行引體向上測(cè)試,相關(guān)數(shù)據(jù)的統(tǒng)計(jì)圖如下.設(shè)學(xué)生引體向上測(cè)試成績(jī)?yōu)?/span>x(單位:個(gè)).學(xué)校規(guī)定:當(dāng)0≤x2時(shí)成績(jī)等級(jí)為不及格,當(dāng)2≤x4時(shí)成績(jī)等級(jí)為及格,當(dāng)4≤x6時(shí)成績(jī)等級(jí)為良好,當(dāng)x≥6時(shí)成績(jī)等級(jí)為優(yōu)秀.樣本中引體向上成績(jī)優(yōu)秀的人數(shù)占30%,成績(jī)?yōu)?/span>1個(gè)和2個(gè)的人數(shù)相同.

1)補(bǔ)全統(tǒng)計(jì)圖;

2)估計(jì)全校九年級(jí)男生引體向上測(cè)試不及格的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上的點(diǎn)A、B、C、D、E表示連續(xù)的五個(gè)整數(shù),對(duì)應(yīng)的數(shù)分別為a、b、c、d、e

(1)若ae=0,直接寫出代數(shù)式bcd的值為_____;

(2)若ab=7,先化簡(jiǎn),再求值:

(3)若abcde=5,數(shù)軸上的點(diǎn)M表示的實(shí)數(shù)為m,且滿足MA+ME>12,則m的范圍是____。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,,是等腰直角三角形且,把繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到,把繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到,依此類推,得到的等腰直角三角形的直角頂點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ADABC的角平分線,過點(diǎn)D分別作AC、AB的平行線,交AB于點(diǎn)E,交AC于點(diǎn)F

1)求證:四邊形AEDF是菱形.

2)若AF13AD24.求四邊形AEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:

(1)求反比例函數(shù)的表達(dá)式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案