如圖,將平行四邊形AEFG變換到平行四邊形ABCD,其中E,G分別是AB,AD的中點,下列敘述正確的有  (填序號,多選不給分,少選可以酌情給分).
①這種變換是相似變換;②對應邊擴大到原來的2倍;③各對應角擴大到原來的2倍;④周長擴大到原來的2倍;⑤面積擴大到原來的4倍.
①②④⑤

試題分析:根據(jù)相似多邊形的性質(zhì),平行四邊形的性質(zhì)對各小題分析判斷利用排除法求解.
解:①這種變換是相似變換,正確;
②∵E,G分別是AB,AD的中點,
∴對應邊擴大到原來的2倍,正確;
③各對應角大小不變,故本小題錯誤;
④根據(jù)相似多邊形周長的比等于相似比,周長擴大到原來的2倍,正確;
⑤根據(jù)相似多邊形面積的比等于相似比的平方,面積擴大到原來的4倍,正確;
綜上所述,敘述正確的有①②④⑤.
故答案為:①②④⑤.
點評:本題考查了相似多邊形的性質(zhì),平行四邊形的性質(zhì),熟記性質(zhì)是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:?ABCD中,E是BA邊延長線上一點,CE交對角線DB于點G,交AD邊于點F.
求證:CG2=GF•GE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

△ABC∽△DEF,若△ABC的邊長分別為5cm,6cm,7cm,而4cm是△DEF中一邊的長度,則△DEF的另外兩邊的長度是 _________ 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,D、E分別是△ABC的邊AB,AC上的點,DE∥BC,=2,則SADE:SABC=     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將一個多邊形縮小為原來的,這樣的多邊形可以畫 _________ 個,你的理由是 _________ 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

八年級數(shù)學學習合作小組在學過《圖形的相似》這一章后,發(fā)現(xiàn)可將相似三角形的定義、判定以及性質(zhì)拓展到矩形、菱形的相似中去.如:我們可以定義:“長和寬之比相等的矩形是相似矩形.”相似矩形也有以下的性質(zhì):相似矩形的對角線之比等于相似比,周長比等于相似比,面積比等于相似比的平方等等.請你參與這個學習小組,一同探索這類問題:

(1)寫出判定菱形相似的一種判定方法:若有一組角對應相等(或兩組對角線對應成比例),則這兩個菱形相似;
(2)如圖,將菱形ABCD沿著直線AC向右平移后得到菱形A′B′C′D′,試證明:四邊形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=,菱形A′FCE的面積是菱形ABCD面積的一半,求平移的距離AA′的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在四邊形ABCD與A′B′C′D′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,∠D=∠D′,且=,則四邊形 ABCD ∽四邊形 ABCD ,且四邊形ABCD與A′B′C′D′的相似比是  ,四邊形ABCD與A′B′C′D′的面積比是  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將一個矩形紙片ABCD沿AD和BC的中點的連線對折,要使矩形AEFB與原矩形相似,則原矩形的長和寬的比應為( 。
A.2:1B.:1C.:1D.1:1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知,AB=AC,過點A作AG⊥BC,垂足為G,延長AG交BM于D,過點A做AN∥BM,過點C作EF∥AD,與射線AN、BM分別相交于點F、E。

(1)求證:△BCE∽△AGC;
(2)點P是射線AD上的一個動點,設AP=x,四邊形ACEP的面積是y,若AF=5,。
①求y關于x的函數(shù)關系式,并寫出定義域;
②當點P在射線AD上運動時,是否存在這樣的點P,使得△CPE的周長為最?若存在,求出此時y的值,若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案