【題目】下面的四個圖案中,既可用旋轉來分析整個圖案的形成過程,又可用軸對稱來分析整個圖案的形成過程的圖案有( )

A.4個 B.3個 C.2個 D.1個

【答案】A

【解析】

試題分析:根據(jù)旋轉、軸對稱的定義來分析.

圖形的旋轉是圖形上的每一點在平面上繞某個固定點旋轉固定角度的位置移動;

軸對稱是指如果一個圖形沿一條直線折疊,直線兩側的圖形能夠互相重合,就是軸對稱.

解:圖形1可以旋轉90°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合;

圖形2可以旋轉180°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合;

圖形3可以旋轉180°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合;

圖形4可以旋轉90°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合.

故既可用旋轉來分析整個圖案的形成過程,又可用軸對稱來分析整個圖案的形成過程的圖案有4個.

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=kx與反比例函數(shù)y= 的圖象不可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBCAD=2,BC=6CD=8,E,F分別是邊ABCD的中點, DHBC于點H,連接EH,EC,EF,現(xiàn)有下列結論:①∠CDH=30°EF=4;③四邊形EFCH是菱形;SEFC=3SBEH.你認為結論正確的有___________.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上有點a,b,c三點

(1)用“<”將a,b,c連接起來.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化簡|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|x﹣a|+|x﹣b|的最小值為   

②|x﹣a|+|x﹣b|+|x+1|的最小值為   ;

③|x﹣a|+|x﹣b|+|x﹣c|的最小值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點EAD邊上,點FAD的延長線上,且BE=CF.

(1)求證:四邊形EBCF是平行四邊形.

(2)若BEC=90°,ABE=30°,AB=,求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,在等邊ABC中,D是邊AC上一點,連接BD,將BCD繞點B逆時針旋轉60°,得到BAE,連接ED,若BC=5,BD=4.則下列結論錯誤的是( ).

A.AEBC B. ADE=BDC

C.BDE是等邊三角形 D. ADE的周長是9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩塊等腰直角三角形紙片AOBCOD按圖所示放置,直角頂點重合在點O處,AB25.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉α(0°α90°)角度,如圖所示.

(1)在圖中,求證:ACBD,且ACBD

(2)BDCD在同一直線上(如圖③)時,若AC7,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,

(1)如果∠AOB=90°,BOC=38°,求∠DOE的度數(shù);

(2)如果∠AOB=α,BOC=β(α、β均為銳角,αβ),其他條件不變,求∠DOE;

(3)從(1)、(2)的結果中,你發(fā)現(xiàn)了什么規(guī)律,請寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點E,交線段DC的延長線于點F,以EC、CF為鄰邊作平行四邊形ECFG

(1)如圖1,證明平行四邊形ECFG為菱形;

(2)如圖2,若∠ABC=90°,MEF的中點,求∠BDM的度數(shù);

(3)如圖3,若∠ABC=120°,請直接寫出∠BDG的度數(shù).

查看答案和解析>>

同步練習冊答案