觀察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,
…
以上每個等式中兩邊數(shù)字是分別對稱的,且每個等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對稱等式”.
(1)根據(jù)上述各式反映的規(guī)律填空,使式子稱為“數(shù)字對稱等式”:
①52×______=______×25;
②______×396=693×______.
(2)設(shè)這類等式左邊兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,且2≤a+b≤9,寫出表示“數(shù)字對稱等式”一般規(guī)律的式子(含a、b),并證明.
【答案】分析:(1)觀察規(guī)律,左邊,兩位數(shù)所乘的數(shù)是這個兩位數(shù)的個位數(shù)字變?yōu)榘傥粩?shù)字,十位數(shù)字變?yōu)閭位數(shù)字,兩個數(shù)字的和放在十位;右邊,三位數(shù)與左邊的三位數(shù)字百位與個位數(shù)字交換,兩位數(shù)與左邊的兩位數(shù)十位與個位數(shù)字交換然后相乘,根據(jù)此規(guī)律進行填空即可;
(2)按照(1)中對稱等式的方法寫出,然后利用多項式的乘法進行證明即可.
解答:解:(1)①∵5+2=7,
∴左邊的三位數(shù)是275,右邊的三位數(shù)是572,
∴52×275=572×25,
②∵左邊的三位數(shù)是396,
∴左邊的兩位數(shù)是63,右邊的兩位數(shù)是36,
63×369=693×36;
故答案為:①275,572;②63,36.
(2)∵左邊兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,
∴左邊的兩位數(shù)是10a+b,三位數(shù)是100b+10(a+b)+a,
右邊的兩位數(shù)是10b+a,三位數(shù)是100a+10(a+b)+b,
∴一般規(guī)律的式子為:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),
證明:左邊=(10a+b)×[100b+10(a+b)+a],
=(10a+b)(100b+10a+10b+a),
=(10a+b)(110b+11a),
=11(10a+b)(10b+a),
右邊=[100a+10(a+b)+b]×(10b+a),
=(100a+10a+10b+b)(10b+a),
=(110a+11b)(10b+a),
=11(10a+b)(10b+a),
左邊=右邊,
所以“數(shù)字對稱等式”一般規(guī)律的式子為:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).
點評:本題是對數(shù)字變化規(guī)律的考查,根據(jù)已知信息,理清利用左邊的兩位數(shù)的十位數(shù)字與個位數(shù)字變化得到其它的三個數(shù)字是解題的關(guān)鍵.