【題目】已知,關(guān)于x的分式方程1

1)當m=﹣1時,請判斷這個方程是否有解并說明理由;

2)若這個分式方程有實數(shù)解,求m的取值范圍.

【答案】1)當m=﹣1時,這個方程無解,理由見解析;(2m的取值范圍是m≠±1或﹣

【解析】

1)當m=﹣1時,方程變?yōu)?/span>,化成整式方程得x2x2+2xx2+x,于是得到結(jié)論;

2)原方程化為整式方程得到2m+1xm1,根據(jù)這個分式方程有實數(shù)解,得到m≠﹣1,由于當x0或﹣1時,這個分式方程無實數(shù)解,于是得到結(jié)論.

1)這個方程有解,

理由:當m=﹣1時,方程變?yōu)?/span>,

去分母得,x2x2+2xx2+x,

∴當m=﹣1時,這個方程無解;

21,

化為整式方程得,2m+1xm1,

∵這個分式方程有實數(shù)解,

m≠﹣1,

∵當x0或﹣1時,這個分式方程無實數(shù)解,

m1或﹣,

m的取值范圍是m≠±1或﹣

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=2x2﹣4x﹣6.
(1)用配方法將y=2x2﹣4x﹣6化成y=a (x﹣h)2+k的形式;并寫出對稱軸和頂點坐標.
(2)當0<x<4時,求y的取值范圍;
(3)求函數(shù)圖象與兩坐標軸交點所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列美麗的圖案,既是軸對稱圖形又是中心對稱圖形的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某種商品在第x天的售價與銷量的相關(guān)信息如下表;已知該商品的進價為每件30元,設(shè)銷售該商品每天的利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式
(2)問銷售該商品第幾天時,當天銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,E是CD邊上一點,
(1)將△ADE繞點A按順時針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 , ∠AFB=∠ .
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點,且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ.
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列推理說明:

如圖,已知B+∠BCD=180°,B=∠D.求證:E=∠DFE

證明:∵∠B+∠BCD=180°(  。,

ABCD    

∴∠B=    

∵∠B=∠D( 已知。

∴ ∠ = ( 等量代換。

ADBE   

∴∠E=∠DFE   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四個全等的直角三角形按圖示方式圍成正方形ABCD,過各較長直角邊的中點作垂線,圍成面積為S的小正方形EFGH.已知AMRtABM較長直角邊,AM2EF,則正方形ABCD的面積為( 。

A. 14SB. 13SC. 12SD. 11S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,有若干個橫縱坐標分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,02,02,1111,222,,根據(jù)這個規(guī)律,第2019個點的坐標為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,∠FAD60°

1)求∠ADE的度數(shù);

2)求證:EFBC

查看答案和解析>>

同步練習冊答案