【題目】如圖,△ABC為⊙O的內(nèi)接三角形,P為BC延長線上一點,∠PAC=∠B,AD為⊙O的直徑,過C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判斷直線PA與⊙O的位置關(guān)系,并說明理由;
(2)求證:AG2=AFAB;
(3)若⊙O的直徑為10,AC=2 ,AB=4 ,求△AFG的面積.
【答案】
(1)解:PA與⊙O相切.理由:
連接CD,
∵AD為⊙O的直徑,
∴∠ACD=90°,
∴∠D+∠CAD=90°,
∵∠B=∠D,∠PAC=∠B,
∴∠PAC=∠D,
∴∠PAC+∠CAD=90°,
即DA⊥PA,
∵點A在圓上,
∴PA與⊙O相切
(2)解:證明:如圖2,連接BG,
∵AD為⊙O的直徑,CG⊥AD,
∴ = ,
∴∠AGF=∠ABG,
∵∠GAF=∠BAG,
∴△AGF∽△ABG,
∴AG:AB=AF:AG,
∴AG2=AFAB
(3)解:解:如圖3,連接BD,
∵AD是直徑,
∴∠ABD=90°,
∵AG2=AFAB,AG=AC=2 ,AB=4 ,
∴AF= = ,
∵CG⊥AD,
∴∠AEF=∠ABD=90°,
∵∠EAF=∠BAD,
∴△AEF∽△ABD,
∴ ,
即 ,
解得:AE=2,
∴EF= =1,
∵EG= =4,
∴FG=EG﹣EF=4﹣1=3,
∴S△AFG= FGAE= ×3×2=3.
【解析】(1)首先連接CD,由AD為⊙O的直徑,可得∠ACD=90°,然后由圓周角定理,證得∠B=∠D,由已知∠PAC=∠B,可證得DA⊥PA,繼而可證得PA與⊙O相切.(2)首先連接BG,易證得△AFG∽△AGB,然后由相似三角形的對應邊成比例,證得結(jié)論;(3)首先連接BD,由AG2=AFAB,可求得AF的長,易證得△AEF∽△ABD,即可求得AE的長,繼而可求得EF與EG的長,則可求得答案.
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:∣1-∣+ -(π-3.14)0
(2)已知 (x-1)2 =16,求x的值
(3)已知8(x-1)3 -27=0,求x的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰梯形ABCD中,∠B=60°,P、Q同時從B出發(fā),以每秒1個單位長度分別沿B→A→D→C和B→C→D方向運動至相遇時停止.設(shè)運動時間為t(秒),△BPQ的面積為S(平方單位),S與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是( )
A.當t=4秒時,S=4
B.AD=4
C.當4≤t≤8時,S=2 t
D.當t=9秒時,BP平分梯形ABCD的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初中學生帶手機上學,給學生帶來了方便,同時也帶來了一些負面影響.針對這種現(xiàn)象,某校九年級數(shù)學興趣小組的同學隨機調(diào)查了若干名家長對“初中學生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如圖的統(tǒng)計圖:
(1)這次調(diào)查的家長總?cè)藬?shù)為人,表示“無所謂”的家長人數(shù)為人;
(2)隨機抽查一個接受調(diào)查的家長,恰好抽到“很贊同”的家長的概率是;
(3)求扇形統(tǒng)計圖中表示“不贊同”的扇形的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B兩點,與y軸交于C點,其對稱軸為直線x=1.
(1)直接寫出拋物線的解析式:;
(2)把線段AC沿x軸向右平移,設(shè)平移后A、C的對應點分別為A′、C′,當C′落在拋物線上時,求A′、C′的坐標;
(3)除(2)中的點A′、C′外,在x軸和拋物線上是否還分別存在點E、F,使得以A、C、E、F為頂點的四邊形為平行四邊形?若存在,求出E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四根長度一定的木條,其中AB=6cm,CD=15cm,將這四根木條用小釘絞合在一起,構(gòu)成一個四邊形ABCD(在A、B、C、D四點處是可以活動的).現(xiàn)固定AB邊不動,轉(zhuǎn)動這個四邊形,使它的形狀改變,在轉(zhuǎn)動的過程中有以下兩個特殊位置.
位置一:當點D在BA的延長線上時,點C在線段AD上(如圖2);
位置二:當點C在AB的延長線上時,∠C=90°.
(1)在圖2中,若設(shè)BC的長為,請用含的代數(shù)式表示AD的長;
(2)在圖3中畫出位置二的示意圖
(3)利用圖2、圖3求圖1的四邊形ABCD中BC、AD邊的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2 ,∠C=120°,以點C為圓心的 與AB,AD分別相切于點G,H,與BC,CD分別相交于點E,F(xiàn).若用扇形CEF作一個圓錐的側(cè)面,則這個圓錐的高是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC=45°,D是BC邊上的一點,BD=2,將△ACD沿直線AD翻折,點C剛好落在AB邊上的點E處.若P是直線AD上的動點,則△PEB的周長的最小值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的圓O與AD、AC分別交于點E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com