【題目】如圖,為直線上一點,平分,.
(1)若,求和的度數(shù);
(2)猜想:是否平分?請直接寫出你猜想的結(jié)論;
(3)與互余的角有:______.
【答案】(1),;(2)平分;(3)、.
【解析】
(1)根據(jù)角平分線和直角的性質(zhì),即可得出∠COE,然后根據(jù)平角的性質(zhì)即可得出∠BOE;
(2)根據(jù)角平分線的性質(zhì)得出,然后根據(jù)余角的性質(zhì)得出∠COE=∠BOE,即可得出平分;
(3)根據(jù)余角的性質(zhì),即可判定.
(1)∵平分,,
∴,
∵.
∴,
;
(2)平分
∵平分,
∴
∵
∴∠DOC+∠COE=∠AOD+∠BOE=90°
∴∠COE=∠BOE
∴平分;
(3)由題意,得∠DOE=∠DOC+∠COE=90°
∠AOD+∠BOE=90°,∠AOD=∠DOC
∴與互余的角有:、
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:如圖1,在平行四邊形ABCD中,E是AD上一點,AE=AB,∠EAB=60°,過點E作直線EF,在EF上取一點G.使得∠EGB=∠EAB,連接AG.
求證:EG=AG+BG.
小明同學(xué)的思路是:作∠CAM=∠EAB交CE于點H,構(gòu)造全等三角形,經(jīng)過推理解決問題.
參考小明同學(xué)的思路,探究并解決下列問題:
(1)完成上面問題中的證明;
(2)如果將原問題中的“∠EAB=60°”改為“∠EAB=90°”,原問題中的其它條件不變(如圖2),請?zhí)骄烤段EC、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
解:線段EG、AG、BG之間的數(shù)量關(guān)系為___________________________________________________.證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】股民小明上星期六買進(jìn)某公司股票1000股,每股20元,下表為本周內(nèi)每日該股票的漲跌情況(單位.元)
星期 | 一 | 二 | 三 | 四 | 五 | 六 |
每股 漲跌 | +4 | +4.5 | -1 | -2.5 | -5 | +2 |
(1)星期四收盤時,每股是多少元?
(2)本周內(nèi)每股最高價多少元?最低價多少元?
(3)已知小明買進(jìn)股票時付了2%0的手續(xù)費,賣出時還需付成交額2%0的手續(xù)費和1%0的交易稅,如果小明在星期六收盤前將全部股票賣出,它的收益情況如何?(注:2%0=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在一條可以折疊的數(shù)軸上,點A,B分別表示數(shù)-9和4.
(1)A,B兩點之間的距離為________.
(2)如圖2,如果以點C為折點,將這條數(shù)軸向右對折,此時點A落在點B的右邊1個單位長度處,則點C表示的數(shù)是________.
(3)如圖1,若點A以每秒3個單位長度的速度沿數(shù)軸向右運動,點B以每秒2個單位長度的速度也沿數(shù)軸向右運動,那么經(jīng)過多少時間,A、B兩點相距4個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩人在一次射擊比賽中擊中靶的情況(擊中靶中心“×”所在的圓面為10環(huán),靶中各數(shù)字表示該數(shù)所在圓環(huán)被擊中所得的環(huán)數(shù)),每人射擊了6次.
(1)請用列表法將他倆的射擊成績統(tǒng)計出來;
(2)請你運用所學(xué)的統(tǒng)計知識做出分析,從兩個不同角度評價甲、乙兩人的打靶成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C90°,ACBC,AD是△ABC的角平分線,以D為圓心,DC為半徑作⊙D,交AD于點E.
(1)判斷直線AB與⊙D的位置關(guān)系并證明.
(2)若AC1,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點A1、A2、A3,…和點B1、B2、B3,…分別在直線和軸上.已知C1(1,-1),C2(, ),則點A3的坐標(biāo)是________________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com