【題目】如圖,的邊位于直線上,,,,若由現(xiàn)在的位置向右無滑動地旋轉,當次落在直線上時,點所經(jīng)過的路線的長為________(結果用含有的式子表示)

【答案】

【解析】

根據(jù)含30度的直角三角形三邊的關系得到BC=1,AB=2BC=2,∠ABC=60°;點A先以B點為旋轉中心,順時針旋轉120°A1,再以點C1為旋轉中心,順時針旋轉90°A2,然后根據(jù)弧長公式計算兩段弧長,從而得到點A3次落在直線上時,點A所經(jīng)過的路線的長.

∵Rt△ABC,AC=,∠ACB=90°,∠A=30°

∴BC=1,AB=2BC=2,∠ABC=60°;

∵Rt△ABC由現(xiàn)在的位置向右無滑動的翻轉,且點A3次落在直線l上時,3的長,2的長,

A經(jīng)過的路線長=×3+×2=(4+)π.

故答案為:(4+)π.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線過B(﹣2,6),C(2,2)兩點.

(1)試求拋物線的解析式;

(2)記拋物線頂點為D,求△BCD的面積;

(3)若直線向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點,∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過邊長為1的等邊的邊上一點,作,延長線上一點,當時,連接邊于,則的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+x+4的對稱軸是直線x=3,且與x軸相交于A,B兩點(B點在A點右側)與y軸交于C點.

(1)求拋物線的解析式和A、B兩點的坐標;

(2)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;

(3)M是拋物線上任意一點,過點My軸的平行線,交直線BC于點N,當MN=3時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,內接于,,,

的度數(shù);

沿折疊為,將沿折疊為,延長相交于點;求證:四邊形是正方形;

,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,長方形ABCD(每個內角都是90°)的頂點的坐標分別是A0,m),Bn,0),(mn0),點EAD上,AEAB,點Fy軸上,OFOBBF的延長線與DA的延長線交于點M,EFAB交于點N

1)試求點E的坐標(用含m,n的式子表示);

2)求證:AMAN

3)若ABCD12cm,BC20cm,動點PB出發(fā),以2cm/s的速度沿BCC運動的同時,動點QC出發(fā),以vcm/s的速度沿CDD運動,是否存在這樣的v值,使得△ABP與△PQC全等?若存在,請求出v值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某年級共有300名學生,為了解該年級學生A,B兩門課程的學習情況,從中隨機抽取60名學生進行測試,獲得了他們的成績(百分制)、并對數(shù)據(jù)(成績)進行整理、描述和分析,下面給出了部分信息.

a.A課程成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100);

b.A課程成績在70≤x<80這一組的是:

70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5

c.A,B兩門課程成績的平均數(shù)、中位數(shù)、眾數(shù)如下:

課程

平均數(shù)

中位數(shù)

眾數(shù)

A

75.8

m

84.5

B

72.2

70

83

根據(jù)以上信息,回答下列問題:

(1)寫出表中m的值;

(2)在此次測試中,某學生的A課程成績?yōu)?6分,B課程成績?yōu)?1分,這名學生成績排名更靠前的課程是______(填“A”或“B”),理由是________________________________;

(3)假設該年級學生都參加此次測試,估計A課程成績超過75.8分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).

(1)在圖中作出△ABC關于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應)

(2)在(1)問的結果下,連接BB1,CC1,求四邊形BB1C1C的面積.

查看答案和解析>>

同步練習冊答案