【題目】如圖,點在雙曲線上,垂直軸,垂足為,點在上,平行于軸交雙曲線于點,直線與軸交于點,已知,點的坐標為.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)直接寫出反比例函數(shù)值大于一次函數(shù)值時自變量的值范圍.
【答案】(1);y=x-1;(2)或.
【解析】
(1)由點C的坐標為(3,2)得AC=2,而AC:AD=1:3,得到AD=6,則D點坐標為(3,6),然后利用待定系數(shù)法確定雙曲線的解析式,把y=2代入求得B的坐標,然后根據(jù)待定系數(shù)法即可求得直線AB的解析式;
(2)解析式聯(lián)立,解方程組求得另一個交點坐標,然后利用圖象即可求得.
(1)∵點的坐標為,
∴,.
∵,
∴,
∴點的坐標為,
設該雙曲線的解析式為,
∴,
∴該雙曲線的解析式為;
設直線AB的解析式為,
∵CB平行于x軸交曲線于點B,
∴B點縱坐標為2,
代入求得,
∴B(9,2),
把A(3,0)和B(9,2)代入y=kx+b得,
3k+b=0,9k+b=2,
解得:k=,b=-1,
∴直線AB的解析式為y=x-1;
(2)解得或,
∴反比例函數(shù)與一次函數(shù)的另一個交點為(-6,-3),
∴根據(jù)圖象,當x<-6或0<x<9時,反比例函數(shù)的圖象在一次函數(shù)值的上方,
∴反比例函數(shù)值大于一次函數(shù)值時自變量的取值范圍x<-6或0<x<9.
故答案為:或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交軸于點和點,交軸于點.已知點的坐標為,點為第二象限內拋物線上的一個動點,連接、、.
(1)求這個拋物線的表達式.
(2)當四邊形面積等于4時,求點的坐標.
(3)①點在平面內,當是以為斜邊的等腰直角三角形時,直接寫出滿足條件的所有點的坐標;
②在①的條件下,點在拋物線對稱軸上,當時,直接寫出滿足條件的所有點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是銳角△ABC的外接圓,FH是⊙O的切線,切點為F,FH∥BC,連結AF交BC于E,∠ABC的平分線BD交AF于D,連結BF.下列結論:①AF平分∠BAC;②點F為△BDC的外心;③;④若點M,N分別是AB和AF上的動點,則BN+MN的最小值是ABsin∠BAC.其中一定正確的是_____(把你認為正確結論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線(為正整數(shù),且)與軸的交點為和,,當時,第1條拋物線與軸的交點為和,其他依次類推.
(1)求,的值及拋物線的解析式;
(2)拋物線的頂點的坐標為( , );依次類推,第條拋物線的頂點的坐標為( , );所有拋物線的頂點坐標滿足的函數(shù)關系式是 ;
(3)探究下列結論:
①是否存在拋物線,使得為等腰直角三角形?若存在,請求出拋物線的表達式;若不存在,請說明理由;
②若直線與拋物線分別交于則線段,,…則線段,,…的長有何規(guī)律?請用含的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果函數(shù)C:()的圖象經(jīng)過點(m,n)、(-m,-n),那么我們稱函數(shù)C為對稱點函數(shù),這對點叫做對稱點函數(shù)的友好點.
例如:函數(shù)經(jīng)過點(1,2)、(-1,-2),則函數(shù)是對稱點函數(shù),點(1,2)、(-1,-2)叫做對稱點函數(shù)的友好點.
(1)填空:對稱點函數(shù)一個友好點是(3,3),則b= ,c= ;
(2)對稱點函數(shù)一個友好點是(2b,n),當2b≤x≤2時,此函數(shù)的最大值為,最小值為,且=4,求b的值;
(3)對稱點函數(shù)()的友好點是M、N(點M在點N的上方),函數(shù)圖象與y軸交于點A.把線段AM繞原點O順時針旋轉90°,得到它的對應線段A′M′.若線段A′M′與該函數(shù)的圖象有且只有一個公共點時,結合函數(shù)圖象,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自主學習,請閱讀下列解題過程.
例:用圖象法解一元二次不等式:.
解:設,則是的二次函數(shù).
拋物線開口向上.
又當時,,解得.
由此得拋物線的大致圖象如圖所示.
觀察函數(shù)圖象可知:當或時,.
的解集是:或.
通過對上述解題過程的學習,按其解題的思路和方法解答下列問題:
(1)上述解題過程中,滲透了下列數(shù)學思想中的 和 .(只填序號)①轉化思想,②分類討論思想,③數(shù)形結合思想
(2)觀察圖象,直接寫出一元二次不等式:的解集是 ;
(3)仿照上例,用圖象法解一元二次不等式:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解全校學生對電視節(jié)目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學生中隨機抽取部分學生進行問卷調查,并把調查結果繪制成兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,解答下列問題:
(1)這次被調查的學生共有多少人?
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校約有1500名學生,估計全校學生中喜歡娛樂節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學中選取2名,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com