如圖,在△ABC中,∠C=90°,∠A、∠B的平分線交于點(diǎn)D,DE⊥BC于點(diǎn)E,DF⊥AC于點(diǎn)F,

(1)求證:四邊形CFDE是正方形
(2)若AC=3,BC=4,求△ABC的內(nèi)切圓半徑.
可證DE=DG∴DE=DF∵∠C=∠CFD=∠CED=90°∴四邊形CFDE是正方形.
(2)△ABC的內(nèi)切圓半徑為1.

試題分析:(1)過(guò)D作DG⊥AB交AB于G點(diǎn),
∵AD是∠BAC的角平分線
∴∠FAD=∠BAD
∵DF⊥AC,DG⊥AB
∴∠AFD=∠AGD=90°
∵AD=AD
∴△AFD≌△AGD
∴DF=DG
同理可證DE=DG
∴DE=DF
∵∠C=∠CFD=∠CED=90°
∴四邊形CFDE是正方形.  
(2).∵AC=3,BC=4
∴AB=5
由(1)知AF=AG,BE=BG
∴AF+BE=AB
∵四邊形CFDE是正方形∴2CE=AC+CB-AB=2,即CE=1
△ABC的內(nèi)切圓半徑為1.
點(diǎn)評(píng):本題難度中等,主要考查學(xué)生對(duì)正方形的判定與內(nèi)切圓知識(shí)點(diǎn)的掌握。為中考常考題型,學(xué)生要牢固掌握幾何性質(zhì)與判定。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥AC于點(diǎn)D,過(guò)點(diǎn)C作⊙O 的切線, 交OD的延長(zhǎng)線與點(diǎn)E,連接AE.

(1)求證:AE與⊙O相切;
(2)連接BD并延長(zhǎng)交AE于點(diǎn)F,若EC∥AB,OA=6,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若正六邊形的邊長(zhǎng)是1,則它的半徑是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

圓錐的底面直徑為6cm,母線長(zhǎng)為5cm,則圓錐的側(cè)面積是      cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中,是真命題的為
A.三個(gè)點(diǎn)確定一個(gè)圓
B.一個(gè)圓中可以有無(wú)數(shù)條弦,但只有一條直徑
C.圓既是軸對(duì)稱圖形,又是中心對(duì)稱圖形
D.同弧所對(duì)的圓周角與圓心角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,A、B、C是⊙O上的三點(diǎn),∠CAO=25°,∠BCO=35°,則∠AOB=     度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD的邊AB在X軸上,A與O重合,CD∥AB,D(0,),直線AE與CD交于E,DE=6。以BE為折痕,把點(diǎn)A翻恰好與點(diǎn)C重合;動(dòng)點(diǎn)P從點(diǎn)D出發(fā)沿著D→C→B→O路徑勻速運(yùn)動(dòng),速度為每秒4個(gè)單位;以P為圓心的⊙P半徑每秒增加個(gè)單位,當(dāng)點(diǎn)P在點(diǎn)D處時(shí),⊙P半徑為;直線AE沿y軸正方向向上平移,速度為每秒個(gè)單位;直線AE、⊙P同時(shí)出發(fā),當(dāng)點(diǎn)P到終點(diǎn)O時(shí)兩者都停止,運(yùn)動(dòng)時(shí)間為t;

(1) 求點(diǎn)B的坐標(biāo);
(2)求當(dāng)直線AE與⊙P相切時(shí)t的值;
(3) 在整個(gè)運(yùn)動(dòng)過(guò)程中直線AE與⊙P相交的時(shí)間共有幾秒?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以A(5,1)為圓心,以2個(gè)單位長(zhǎng)度為半徑的⊙Ax軸于點(diǎn)BC.解答下列問(wèn)題:

(1)將⊙A向左平移_________個(gè)單位長(zhǎng)度與y軸首次相切,得到⊙A1.此時(shí)點(diǎn)A1的坐標(biāo)為________,陰影部分的面積S_________;
(2)求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在半徑為4的⊙O中,點(diǎn)C是以AB為直徑的半圓的中點(diǎn),OD⊥AC,垂足為D,點(diǎn)E是射線AB上的任意一點(diǎn),DF//AB,DF與CE相交于點(diǎn)F,設(shè)EF=,DF=
(1) 如圖1,當(dāng)點(diǎn)E在射線OB上時(shí),求關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;

(2) 如圖2,當(dāng)點(diǎn)F在⊙O上時(shí),求線段DF的長(zhǎng);
   
(3) 如果以點(diǎn)E為圓心、EF為半徑的圓與⊙O相切,求線段DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案