【題目】已知在圖一中,將等邊BC邊中點(diǎn)D順時(shí)針旋轉(zhuǎn),直線AG與直線CF交于點(diǎn)求證.小明同學(xué)的思路是這樣的:通過(guò)證明得到,從而得到,繼續(xù)推理就可以使問(wèn)題得到解決.

請(qǐng)根據(jù)小明的思路,求證:;

愛(ài)動(dòng)腦筋的小明把問(wèn)題做了進(jìn)一步思考,他想:如果把題目的“等邊”改成“等腰直角,其中”,如圖二,中的結(jié)論還成立嗎?如果成立,求此時(shí)線段BM的最大值.

小明繼續(xù)大膽設(shè)問(wèn):如圖三,在中,,,將這樣的按照題目中的方式旋轉(zhuǎn),請(qǐng)直接寫(xiě)出AGCF的位置關(guān)系以及線段BM的變化范圍.

【答案】(1)見(jiàn)解析;(2)成立,最大值為;(3),

【解析】

想辦法證明,推出,由,推出,推出,可得;

結(jié)論成立:證明方法類似利用四邊形三邊關(guān)系求出BM的最大值;

結(jié)論:理由三角形的三邊關(guān)系求出BM的取值范圍即可.

證明:如圖一中,

是等邊三角形,,

,

,

,

,

,

,

,

解:如圖二中,結(jié)論成立:

理由:是等腰直角三角形,,

,

,

,

,

,

,

,

AC的中點(diǎn)O,連接BO,OMBM

,

,

當(dāng)B、OM共線時(shí),BM的值最大,最大值為

解:如圖三中,結(jié)論:

理由::是等腰三角形,

,

,

,

,

,

,

,

AC的中點(diǎn)O,連接BO,OM,BM

,,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?

2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,該校有幾種購(gòu)買方案?

3)上面的哪種方案費(fèi)用最低?按費(fèi)用最低方案購(gòu)買需要多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:BD的直徑,O為圓心,點(diǎn)A為圓上一點(diǎn),過(guò)點(diǎn)B的切線交DA的延長(zhǎng)線于點(diǎn)F,點(diǎn)C上一點(diǎn),且,連接BCAD于點(diǎn)E,連接AC

如圖1,求證:;

如圖2,點(diǎn)H內(nèi)部一點(diǎn),連接OH,CH時(shí),求證:;

的條件下,若,的半徑為10,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中.BC5cm,BP、CP分別是∠ABC和∠ACB的平分線,且PDAB,PEAC,則△PDE的周長(zhǎng)是______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購(gòu)進(jìn)A、B兩種花草,第一次分別購(gòu)進(jìn)AB兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購(gòu)進(jìn)A、B兩種花草12棵和5兩次共花費(fèi)940兩次購(gòu)進(jìn)的AB兩種花草價(jià)格均分別相同

、B兩種花草每棵的價(jià)格分別是多少元?

若再次購(gòu)買A、B兩種花草共12B兩種花草價(jià)格不變,且A種花草的數(shù)量不少于B種花草的數(shù)量的4倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)夫?qū)⑻O(píng)果樹(shù)種在正方形的果園內(nèi),為了保護(hù)蘋(píng)果樹(shù)不受風(fēng)吹,他在蘋(píng)果樹(shù)的周圍種上針葉樹(shù).在下圖里,你可以看到農(nóng)夫所種植蘋(píng)果樹(shù)的列數(shù)(n)和蘋(píng)果樹(shù)數(shù)量及針葉樹(shù)數(shù)量的規(guī)律:當(dāng)n為某一個(gè)數(shù)值時(shí),蘋(píng)果樹(shù)數(shù)量會(huì)等于針葉樹(shù)數(shù)量,則n(  )

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀對(duì)學(xué)生的成長(zhǎng)有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表.

組別

時(shí)間小時(shí)

頻數(shù)人數(shù)

頻率

A

6

B

a

C

10

D

8

b

E

4

合計(jì)

1

請(qǐng)根據(jù)圖表中的信息,解答下列問(wèn)題:

表中的______,______,中位數(shù)落在______組,將頻數(shù)分布直方圖補(bǔ)全;

估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足小時(shí)的學(xué)生大約有多少名?

組的4人中,有1名男生和3名女生,該校計(jì)劃在E組學(xué)生中隨機(jī)選出兩人向全校同學(xué)作讀書(shū)心得報(bào)告,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,,對(duì)角線AC平分

如圖1,若,,探究AD、AB與對(duì)角線AC三者之間的數(shù)量關(guān)系,寫(xiě)出結(jié)論,不必證明.

如圖2若將中的條件“”去掉,中的結(jié)論是否還成立?并證明你的結(jié)論;

如圖3,若,試探究ADAB與對(duì)角線AC三者之間的數(shù)量關(guān)系,寫(xiě)出結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度,沿BA向點(diǎn)A移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位的速度,沿CB向點(diǎn)B移動(dòng),連接QP,QD,PD.若兩個(gè)點(diǎn)同時(shí)運(yùn)動(dòng)的時(shí)間為x秒(0<x≤2),解答下列問(wèn)題:

(1)當(dāng)x為何值時(shí),PQ⊥DQ;

(2)設(shè)QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時(shí),S有最小值?并求出最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案