【題目】先閱讀下面的材料,然后解答問題.通過計(jì)算,發(fā)現(xiàn)方程:

的解為,;

的解為;

的解為;

……

1)觀察上述方程的解,猜想關(guān)于的方程的解是_____

2)根據(jù)上面的規(guī)律,猜想關(guān)于的方程的解是_______

3)類似地,關(guān)于的方程的解是______

4)請(qǐng)利用上述規(guī)律求關(guān)于的方程的解.

【答案】1,;(2,;(3;(4,是原方程的解.

【解析】

根據(jù)例題可以得到:方程的左邊與右邊的式子形式完全相同,只是左邊是未知數(shù),右邊是把未知數(shù)換成了具體的數(shù),則方程的解是方程右邊的兩部分,據(jù)此即可求解.

根據(jù)例題規(guī)律,(1)(2)(3)可直接求解,得到答案.

1, ;

2;

3,;

4,

則原方程化為

經(jīng)檢驗(yàn),是原方程的解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一項(xiàng)工程,乙隊(duì)單獨(dú)完成比甲隊(duì)單獨(dú)完成需多用16天,甲隊(duì)單獨(dú)做3天的工作量乙隊(duì)單獨(dú)做需要5天才能完成.

1)甲,乙兩隊(duì)單獨(dú)完成此項(xiàng)工程各需幾天?

2)該項(xiàng)工程先由甲,乙兩隊(duì)合作,再由甲隊(duì)單獨(dú)完成,若完成此項(xiàng)工程不超過18天,甲乙兩隊(duì)至少合作幾天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,在平行四邊形ABCD中,點(diǎn)AB、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線y=k≠0,x0)過點(diǎn)D

1)求此雙曲線的解析式;

2)作直線ACy軸于點(diǎn)E,連結(jié)DE,求 CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)讀讀做做:教材中有這樣的問題,觀察下面的式子,探索它們的規(guī)律,=1-=,=……用正整數(shù)n表示這個(gè)規(guī)律是______

2)問題解決:一容器裝有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的……,第n+1次倒出的水量是L水的……,按照這種倒水方式,這1L水能否倒完?

3)拓展探究:①解方程:+++=;

②化簡(jiǎn):++…+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦經(jīng)銷商計(jì)劃購(gòu)進(jìn)一批電腦機(jī)箱和液晶顯示器,若購(gòu)電腦機(jī)箱10臺(tái)和液液晶顯示器8臺(tái),共需要資金7000元;若購(gòu)進(jìn)電腦機(jī)箱2臺(tái)和液示器5臺(tái),共需要資金4120元.

1)每臺(tái)電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?

2)該經(jīng)銷商購(gòu)進(jìn)這兩種商品共50臺(tái),而可用于購(gòu)買這兩種商品的資金不超過22240元.根據(jù)市場(chǎng)行情,銷售電腦機(jī)箱、液晶顯示器一臺(tái)分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤(rùn)不少于4100元.試問:該經(jīng)銷商有哪幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與、重合),以為邊在右側(cè)作等腰直角三角形,使,連接

1)如圖1,當(dāng)點(diǎn)在線段上時(shí);證明

2)如圖2,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),結(jié)論(1)中的①、②是否仍然成立?若成立,請(qǐng)給予證明:若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠C=∠CBD=90°,DE⊥AB于點(diǎn)E.

(1)求證:△DBE∽△BAC.

(2)若BC=3,DB=2,CA=1,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場(chǎng)某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件。設(shè)每件商品降價(jià)元。據(jù)此規(guī)律,請(qǐng)回答:

(1)商場(chǎng)日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2100元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD的邊長(zhǎng)為4,對(duì)角線AC、BD交于點(diǎn)M

1)直接寫出AM=    

2P是射線AM上的一點(diǎn),QAP的中點(diǎn),設(shè)PQ=x

AP=     ,AQ=    

PQ為對(duì)角線作正方形,設(shè)所作正方形與△ABD公共部分的面積為S,用含x的代數(shù)式表示S,并寫出相應(yīng)的x的取值范圍.(直接寫出,不需要寫過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案