【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為a,點(diǎn)B表示的數(shù)為b,且滿足.

(1)寫出a、bAB的距離:a=________;b=________;AB=________.

(2)若動點(diǎn)P從點(diǎn)A出發(fā),以每秒3個點(diǎn)位長度沿?cái)?shù)軸向右勻速運(yùn)動,動點(diǎn)Q從點(diǎn)B出發(fā),以每秒5個單位長度向右勻速運(yùn)動,若P、Q同時(shí)出發(fā),問點(diǎn)Q運(yùn)動多少秒追上點(diǎn)P?

【答案】(1)a=8b=5,AB=13(2)點(diǎn)Q運(yùn)動秒時(shí)追上點(diǎn)P.

【解析】

1)利用絕對值的非負(fù)性即可求得a、b,進(jìn)而求得AB的長;

2)根據(jù)題意,設(shè)點(diǎn)Q運(yùn)動t秒時(shí)追上點(diǎn)P,則Q運(yùn)動路程為5t,P運(yùn)動路程為3t,利用追及問題公式,列出方程,即可解答.

(1)因?yàn)?/span>.

所以a-8=0,b+5=0

所以a=8b=5,AB=13

(2)設(shè)點(diǎn)Q運(yùn)動t秒時(shí)追上點(diǎn)P,則Q運(yùn)動路程為5t,P運(yùn)動路程為3t

5t3t=13,

t=,即:點(diǎn)Q運(yùn)動秒時(shí)追上點(diǎn)P.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形 ABCD 中, AD 2 AB ;CF 平分 BCD AD F ,作 CE AB , 垂足 E 在邊 AB 上,連接 EF .則下列結(jié)論:① F AD 的中點(diǎn); SEBC 2SCEF;③ EF CF ; DFE 3AEF .其中一定成立的是_____.(把所有正確結(jié)論的序號都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中是我國市制長度單位,1=500米,則該沙田的面積為(

A.750平方千米B.75平方千米C.15平方千米D.7.5平方千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖(1),線段AB的兩個端點(diǎn)的坐標(biāo)分別為(-12,4)(0,10),點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速向點(diǎn)A運(yùn)動;同時(shí),點(diǎn)Q從坐標(biāo)原點(diǎn)O出發(fā),沿x軸的反方向以相同的速度運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒,ΔOPQ的面積S(平方單位)與時(shí)間t(秒)之間的函數(shù)圖象如圖(2)所示。

(1)求點(diǎn)P的運(yùn)動速度;

(2)求面積S與t的函數(shù)關(guān)系式及當(dāng)S最最大值時(shí)點(diǎn)P的坐標(biāo);

(3)點(diǎn)P是S取最大值時(shí)的點(diǎn),設(shè)點(diǎn)M為x軸上的點(diǎn),點(diǎn)N為坐標(biāo)平面內(nèi)的點(diǎn),以點(diǎn)O,P,M,N為頂點(diǎn)的四邊形地矩形,請直接寫出點(diǎn)N的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).

(1)求△AHO的周長;

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)D,E為⊙O上的兩個點(diǎn),延長ADC,使∠CBD=BED.

1)求證:BC是⊙O的切線;

2)當(dāng)點(diǎn)E為弧AD的中點(diǎn)且∠BED=30°時(shí),⊙O半徑為2,求DF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.

(1)求證:△AEC≌△ADB;

(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點(diǎn)分別為(﹣1,0),(3,0).對于下列命題:①2a+b=0;abc<0;b2﹣4ac>0;8a+c>0.其中正確的有( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“低碳環(huán)保,你我同行”,市區(qū)的公共自行車給市民出行帶來不少方便,我校數(shù)學(xué)社團(tuán)小學(xué)員走進(jìn)小區(qū)隨機(jī)選取了市民進(jìn)行調(diào)查,調(diào)查的問題是“您大概多久使用一次公共自行車?”,將本次調(diào)查結(jié)果歸為四種情況:

A.每天都用 B.經(jīng)常使用 C.偶爾使用 D.從未使用

將這次調(diào)查情況整理并繪制出如下兩幅統(tǒng)計(jì)圖:

根據(jù)圖中的信息,解答下列問題:

(1)本次活動共有________位市民參與調(diào)查;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)根據(jù)統(tǒng)計(jì)結(jié)果,若市區(qū)有26萬市民,請估算每天都用公共自行車的市民約有多少人.

查看答案和解析>>

同步練習(xí)冊答案