已知,如圖,正方形的邊長(zhǎng)為6,菱形的三個(gè)頂點(diǎn)分別在正方形邊上,,連接.
(1)當(dāng)時(shí),求的面積;
(2)設(shè),用含的代數(shù)式表示的面積;
(3)判斷的面積能否等于,并說(shuō)明理由.
解:(1)正方形中,,.
又,因此,即菱形的邊長(zhǎng)為.
在和中,,
,,
..
,,
,即菱形是正方形.
同理可以證明.
因此,即點(diǎn)在邊上,同時(shí)可得,
從而.
(2)作,為垂足,連結(jié),
,,
,.
.
在和中,,,
.
,即無(wú)論菱形如何變化,點(diǎn)到直線的距離始終為定值2.
因此.
(3)若,由,得,此時(shí),在中,.
相應(yīng)地,在中,,即點(diǎn)已經(jīng)不在邊上.
故不可能有.
另法:由于點(diǎn)在邊上,因此菱形的邊長(zhǎng)至少為,
當(dāng)菱形的邊長(zhǎng)為4時(shí),點(diǎn)在邊上且滿足,此時(shí),當(dāng)點(diǎn)逐漸向右運(yùn)動(dòng)至點(diǎn)時(shí),的長(zhǎng)(即菱形的邊長(zhǎng))將逐漸變大,最大值為.
此時(shí),,故.
而函數(shù)的值隨著的增大而減小,
因此,當(dāng)時(shí),取得最小值為.
又因?yàn)?sub>,
所以,的面積不可能等于1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2007年初中畢業(yè)升學(xué)考試(江蘇常州卷)數(shù)學(xué)(帶解析) 題型:解答題
已知,如圖,正方形的邊長(zhǎng)為6,菱形的三個(gè)頂點(diǎn)分別在正方形邊上,,連接.
(1)當(dāng)時(shí),求的面積;
(2)設(shè),用含的代數(shù)式表示的面積;
(3)判斷的面積能否等于,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:《第24章 圖形的相似》2009年單元綜合測(cè)試(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com