【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)畫(huà)出把△ABC先向下平移3個(gè)單位,再向右平移4個(gè)單位后所得到的△A1B1C1;

(2)寫(xiě)出A1,B1C1的坐標(biāo);

(3)求△A1B1C1的面積.

【答案】(1)見(jiàn)解析;(2)A1(30),B1(0,-1),C1(2,-2);(3).

【解析】

(1)根據(jù)平移變換的定義作出平移后的對(duì)應(yīng)點(diǎn),順次連接可得;

(2)根據(jù)點(diǎn)在坐標(biāo)系中的位置寫(xiě)出各個(gè)點(diǎn)的坐標(biāo)即可;

(3)用三角形所在的長(zhǎng)方形的面積減去三個(gè)三角形的面積即可得.

(1)如圖所示,△A1B1C1即為所求:

(2)A1(3,0)B1(0,-1),C1 (2,-2);

(3)△A1B1C1的面積為2×3-×1×3-×1×2-×1×2=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班數(shù)學(xué)課外活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度,他們?cè)谶@棵樹(shù)正前方一樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處測(cè)得樹(shù)頂端D的仰角為60°,已知A點(diǎn)的高度AB2米,臺(tái)階AC的坡度i=12,且B,C,E三點(diǎn)在同一條直線上,請(qǐng)根據(jù)以上條件求出樹(shù)DE的高度.(測(cè)傾器的高度忽略不計(jì),結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,等腰梯形ABCD,AB=CD,BE=CE,求證:AE=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了預(yù)防甲型H1N1,某校對(duì)教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量ymg)與時(shí)間x(min)成正比例,藥物燃燒后,yx成反比例,如圖所示,現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請(qǐng)你根據(jù)題中提供的信息,解答下列問(wèn)題:

(1)藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后yx的函數(shù)關(guān)系式呢?

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),生方可進(jìn)教室,那么從消毒開(kāi)始,至少需要幾分鐘后,生才能進(jìn)入教室?

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠BAE與∠BCD互為補(bǔ)角,ABAE,CBCD,連接ED,點(diǎn)PED的中點(diǎn).

1)如圖1,若點(diǎn)A,B,C三點(diǎn)在同一條直線上.

①求證:∠EBD90°;②求證:APBD;

2)如圖2,若點(diǎn)A,BC三點(diǎn)不在同一條直線上,求證:APCP

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,老師拿出三個(gè)邊長(zhǎng)都為5cm 的正方形硬紙板,他向同學(xué)們提出了這樣一個(gè)問(wèn)題:若將三個(gè)正方形紙板不重疊地放在桌面上,用一個(gè)圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應(yīng)有多大?問(wèn)題提出后,同學(xué)們經(jīng)過(guò)討論,大家覺(jué)得本題實(shí)際上就是求將三個(gè)正方形硬紙板無(wú)重疊地適當(dāng)放置,圓形硬紙板能蓋住時(shí)的最小直徑.老師將同學(xué)們討論過(guò)程中探索出的三種不同擺放類(lèi)型的圖形畫(huà)在黑板上,如圖所示:

(1)通過(guò)計(jì)算(結(jié)果保留根號(hào)與π).

(Ⅰ)圖①能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑應(yīng)為

(Ⅱ)圖②能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為

(Ⅲ)圖③能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為

(2)其實(shí)上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請(qǐng)你畫(huà)出用圓形硬紙板蓋住三個(gè)正方形時(shí)直徑最小的放置方法,(只要畫(huà)出示意圖,不要求說(shuō)明理由),并求出此時(shí)圓形硬紙板的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店老板到廠家購(gòu)甲、乙兩種品牌的服裝,若購(gòu)甲種品牌服裝10件,乙種品牌服裝9件,需要1800元;若購(gòu)進(jìn)甲種品牌服裝8件,乙種品牌服裝18件,需要2520元.

(1)求甲、乙兩種品牌的服裝每件分別為多少元?

(2)若銷(xiāo)售一件甲種品牌服裝可獲利18元,銷(xiāo)售一件乙種品牌服裝可獲利30元,根據(jù)市場(chǎng)需要,服裝店老板決定:購(gòu)進(jìn)甲種品牌服裝的數(shù)量要比購(gòu)進(jìn)乙種品牌服裝的數(shù)量的2倍還多4件,且甲種品牌服裝最多可購(gòu)進(jìn)28件,這樣服裝全部售出后可使總的獲利不少于732元,問(wèn)有幾種進(jìn)貨方案?并寫(xiě)出進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】火車(chē)勻速通過(guò)隧道時(shí),火車(chē)在隧道內(nèi)的長(zhǎng)度(米)與火車(chē)行駛時(shí)間(秒)之間的關(guān)系用圖象描述如圖所示,有下列結(jié)論:

火車(chē)的長(zhǎng)度為120米;

火車(chē)的速度為30/秒;

火車(chē)整體都在隧道內(nèi)的時(shí)間為25秒;

隧道長(zhǎng)度為750米.

其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD和四邊形ACED都是平行四邊形,點(diǎn)RDE的中點(diǎn),BR分別交AC、CD于點(diǎn)P、Q.

(1)請(qǐng)寫(xiě)出圖中各對(duì)相似三角形(相似比為1除外);

(2)求BP:PQ:QR.

查看答案和解析>>

同步練習(xí)冊(cè)答案