【題目】如圖,證明定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
已知:點(diǎn)D、E分別是△ABC的邊AB、AC的中點(diǎn).
求證:DE∥BC,DE=BC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點(diǎn)N,連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點(diǎn),BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形中,.將三角形繞著點(diǎn)旋轉(zhuǎn),使得點(diǎn)落在直線上的點(diǎn),點(diǎn)落在點(diǎn).
(1)畫出旋轉(zhuǎn)后的三角形.
(2)求線段在旋轉(zhuǎn)的過程中所掃過的面積(保留).
(3)如果在三角形中,(其中).其他條件不變,請你用含有的代數(shù)式,直接寫出線段旋轉(zhuǎn)的過程中所掃過的面積(保留).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用勾股定理可以在數(shù)軸上畫出表示的點(diǎn),請依據(jù)以下思路完成畫圖,并保留畫圖痕跡:
第一步:(計(jì)算)嘗試滿足,使其中a,b都為正整數(shù).你取的正整數(shù)a=____,b=________;
第二步:(畫長為的線段)以第一步中你所取的正整數(shù)a,b為兩條直角邊長畫Rt△OEF,使O為原點(diǎn),點(diǎn)E落在數(shù)軸的正半軸上, ,則斜邊OF的長即為.
請?jiān)谙旅娴臄?shù)軸上畫圖:(第二步不要求尺規(guī)作圖,不要求寫畫法)
第三步:(畫表示的點(diǎn))在下面的數(shù)軸上畫出表示的點(diǎn)M,并描述第三步的畫圖步驟:_______________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,G是CD邊上的一個(gè)動點(diǎn)(點(diǎn)G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.
(1)①猜想圖1中線段BG、線段DE的長度關(guān)系及所在直線的位置關(guān)系,不必證明;
②將圖1中的正方形CEFG繞著點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)任意角度α,得到如圖2情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,并證明你的判斷.
(2)將原題中正方形改為矩形(如圖3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)題①中得到的結(jié)論哪些成立,哪些不成立?若成立,以圖4為例簡要說明理由.
(3)在第(2)題圖4中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=∠2,∠A=∠F,求證:∠C=∠D.請閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)
證明:∵∠1=∠2(已知)∠1=∠3(_______)
∴∠2=∠3(等量代換)
∴BD∥_____(_______)
∴∠4=_____(_______)
又∵∠A=∠F(已知)
∴AC∥_____(_______)
∴∠4=_____(_______)
∴∠C=∠D(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將長方形紙片向右上方翻折,使得點(diǎn)和點(diǎn)重合,畫出折痕以及翻折后的圖形,折痕與長方形的邊、分別交于點(diǎn)、,判斷重疊部分圖形的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級兩個(gè)班各選派10名學(xué)生參加“垃圾分類知識競賽,各參賽選手的成績?nèi)缦拢?/span>
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下
班級 | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1)班 | 100 | 93 | 93 | 12 | |
八(2)班 | 99 | 95 | 8.4 |
(1)求表中,,的值;
(2)依據(jù)數(shù)據(jù)分析表,有同學(xué)認(rèn)為最高分在(1)班,(1)班的成績比(2)班好.但也有同學(xué)認(rèn)為(2)班的成績更好.請你寫出兩條支持八(2)班成績更好的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com