【題目】已知整數(shù)a1 , a2 , a3 , a4 , …滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2012的值為( )
A.﹣1005
B.﹣1006
C.﹣1007
D.﹣2012

【答案】B
【解析】解:a1=0,
a2=﹣|a1+1|=﹣|0+1|=﹣1,
a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,
a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,
a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,
…,
所以,n是奇數(shù)時,an=﹣ ,n是偶數(shù)時,an=﹣ ,
a2012=﹣ =﹣1006.
故選:B.
【考點精析】利用數(shù)與式的規(guī)律對題目進(jìn)行判斷即可得到答案,需要熟知先從圖形上尋找規(guī)律,然后驗證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任意一條線段EF,其垂直平分線的尺規(guī)作圖痕跡如圖所示.若連接EH,HF,F(xiàn)G,GE,則下列結(jié)論中,不一定正確的是( 。
A.△EGH為等腰三角形
B.△EGF為等邊三角形
C.四邊形EGFH為菱形
D.△EHF為等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則S= a+b﹣1(史稱“皮克公式”).
小明認(rèn)真研究了“皮克公式”,并受此啟發(fā)對正三角形網(wǎng)格中的類似問題進(jìn)行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點中的兩個多邊形:

根據(jù)圖中提供的信息填表:

格點多邊形各邊上的格點的個數(shù)

格點多邊形內(nèi)部的格點個數(shù)

格點多邊形的面積

多邊形1

8

1

多邊形2

7

3

一般格點多邊形

a

b

S

則S與a、b之間的關(guān)系為S=(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊△ABC的邊長為2,P是BC邊上的任一點(與B、C不重合),連接AP,以AP為邊向兩側(cè)作等邊△APD和等邊△APE,分別與邊AB、AC交于點M、N(如圖1).

(1)求證:AM=AN;
(2)設(shè)BP=x.
①若BM= ,求x的值;
②求四邊形ADPE與△ABC重疊部分的面積S與x之間的函數(shù)關(guān)系式以及S的最小值;
③連接DE分別與邊AB、AC交于點G、H(如圖2).當(dāng)x為何值時,∠BAD=15°?此時,以DG、GH、HE這三條線段為邊構(gòu)成的三角形是什么特殊三角形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋里裝有4個大小,質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1,﹣2,3,﹣4,小明先從布袋中隨機(jī)摸出一個球(不放回去),再從剩下的3個球中隨機(jī)摸出第二個乒乓球.
(1)共有種可能的結(jié)果.
(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E為BC上一點,∠BDE=∠DBC.
(1)求證:DE=EC;
(2)若AD= BC,試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=﹣(x﹣1)2+5,當(dāng)m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為(  )
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點為E,該拋物線與x軸交于A、B兩點,與y軸交于點C,且BO=OC=3AO,直線y=﹣ x+1與y軸交于點D.

(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把△EFP放置在菱形ABCD中,使得頂點E,F(xiàn),P分別在線段AB,AD,AC上,已知EP=FP=6,EF=6 ,∠BAD=60°,且AB>6

(1)求∠EPF的大;
(2)若AP=10,求AE+AF的值;
(3)若△EFP的三個頂點E、F、P分別在線段AB、AD、AC上運(yùn)動,請直接寫出AP長的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案