【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點,且B(1,0)
(1)求拋物線的解析式和點A的坐標;
(2)如圖1,點P是直線y=x上的動點,當直線y=x平分∠APB時,求點P的坐標;
(3)如圖2,已知直線y= x﹣ 分別與x軸、y軸交于C、F兩點,點Q是直線CF下方的拋物線上的一個動點,過點Q作y軸的平行線,交直線CF于點D,點E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由.

【答案】
(1)

解:把B(1,0)代入y=ax2+2x﹣3,

可得a+2﹣3=0,解得a=1,

∴拋物線解析式為y=x2+2x﹣3,

令y=0,可得x2+2x﹣3=0,解得x=1或x=﹣3,

∴A點坐標為(﹣3,0).


(2)

解:若y=x平分∠APB,則∠APO=∠BPO,

如圖1,若P點在x軸上方,PA與y軸交于點B′,

由于點P在直線y=x上,可知∠POB=∠POB′=45°,

在△BPO和△B′PO中

,

∴△BPO≌△B′PO(ASA),

∴BO=B′O=1,

設直線AP解析式為y=kx+b,把A、B′兩點坐標代入可得

,解得 ,

∴直線AP解析式為y= x+1,

聯(lián)立 ,解得 ,

∴P點坐標為( );

若P點在x軸下方時,同理可得△BOP≌△B′OP,

∴∠BPO=∠B′PO,

又∠B′PO在∠APO的內部,

∴∠APO≠∠BPO,即此時沒有滿足條件的P點,

綜上可知P點坐標為( , ).


(3)

解:如圖2,作QH⊥CF,交CF于點H,

∵CF為y= x﹣ ,

∴可求得C( ,0),F(xiàn)(0,﹣ ),

∴tan∠OFC= =

∵DQ∥y軸,

∴∠QDH=∠MFD=∠OFC,

∴tan∠HDQ= ,

不妨設DQ=t,DH= t,HQ= t,

∵△QDE是以DQ為腰的等腰三角形,

∴若DQ=DE,則SDEQ= DEHQ= × t×t= t2,

若DQ=QE,則SDEQ= DEHQ= ×2DHHQ= × t= t2,

t2 t2,

∴當DQ=QE時△DEQ的面積比DQ=DE時大.

設Q點坐標為(x,x2+2x﹣3),則D(x, x﹣ ),

∵Q點在直線CF的下方,

∴DQ=t= x﹣ ﹣(x2+2x﹣3)=﹣x2 x+ ,

當x=﹣ 時,tmax=3,

∴(SDEQmax= t2=

即以QD為腰的等腰三角形的面積最大值為


【解析】(1)把B點坐標代入拋物線解析式可求得a的值,可求得拋物線解析式,再令y=0,可解得相應方程的根,可求得A點坐標;
    (2)當點P在x軸上方時,連接AP交y軸于點B′,可證△OBP≌△OB′P,可求得B′坐標,利用待定系數(shù)法可求得直線AP的解析式,聯(lián)立直線y=x,可求得P點坐標;當點P在x軸下方時,同理可求得∠BPO=∠B′PO,又∠B′PO在∠APO的內部,可知此時沒有滿足條件的點P;
   。3)過Q作QH⊥DE于點H,由直線CF的解析式可求得點C、F的坐標,結合條件可求得tan∠QDH,可分別用DQ表示出QH和DH的長,分DQ=DE和DQ=QE兩種情況,分別用DQ的長表示出△QDE的面積,再設出點Q的坐標,利用二次函數(shù)的性質可求得△QDE的面積的最大值. 本題主要考查二次函數(shù)的綜合應用,涉及知識點有待定系數(shù)法、角平分線的定義、全等三角形的判定和性質、三角形的面積、等腰三角形的性質、二次函數(shù)的性質及分類討論等.在(2)中確定出直線AP的解析式是解題的關鍵,在(3)中利用DQ表示出△QDE的面積是解題的關鍵.本題考查知識點較多,綜合性較強,計算量大,難度較大.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4)
(1)請畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2 , 請在y軸右側畫出△A2B2C2 , 并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=3,BC=4,點OBC中點,將ABC繞點O旋轉得AB' C,則在旋轉過程中點A、C兩點間的最大距離是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCO是平行四邊形,OA=2,AB=6,點C在x軸的負半軸上,將ABCO繞點A逆時針旋轉得到ADEF,AD經過點O,點F恰好落在x軸的正半軸上,若點D在反比例函數(shù)y= (x<0)的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個y關于x的函數(shù)同時滿足兩個條件:①圖象過(2,1)點;②當x>0時,y隨x的增大而減。@個函數(shù)解析式為 . (寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1.請同學們利用網(wǎng)格線進行畫圖:

(1)在圖1中,畫一個頂點為格點、面積為5的正方形;

(2)在圖2中,已知線段AB、CD,畫線段EF,使它與AB、CD組成軸對稱圖形;(要求畫出所有符合題意的線段)

(3)在圖3中,找一格點D,滿足:CB、CA的距離相等;到點A、C的距離相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把ABC紙片沿DE折疊,當點A落在四邊形BCDE內部時,∠A與∠1、2之間的數(shù)量關系為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校的復印任務原來由甲復印社承接,其收費y(元)與復印頁數(shù)x(頁)的關系如下表:

x(頁)

100

200

400

1000

y(元)

40

80

160

400

(1)若y與x滿足初中學過的某一函數(shù)關系,求函數(shù)的解析式;

(2)現(xiàn)在乙復印社表示:若學校先按每月付給200元的承包費,則可按每頁0.15元收費,則乙復印社每月收費y(元)與復印頁數(shù)x(頁)的函數(shù)關系為________________,

(3)學校準備復印材料1000頁,應選擇哪個復印社比較優(yōu)惠?

查看答案和解析>>

同步練習冊答案