已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F ,使CF=CE,連結(jié)DF,交BE的延長(zhǎng)線于點(diǎn)G,連結(jié)OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
(3)若GE·GB=4-2,求 正方形ABCD的面積.
(1)(2)略。3)4
【解析】(1)(2)略
(3)設(shè)BC=x,則DC=x ,BD=,CF=(-1)x
GD2=GE·GB=4-2 DC2+CF2=(2GD)2 即 x2+(-1)2x2=4(4-2)
(4-2)x2=4(4-2) x2=4 正方形ABCD的面積是4個(gè)平方單位
(1)利用正方形的性質(zhì),由全等三角形的判定定理SAS即可證得△BCE≌△DCF;
(2)通過(guò)△DBG≌△FBG的對(duì)應(yīng)邊相等知BD=BF;然后由三角形中位線定理證得OG=BF
(3)設(shè)BC=x,利用勾股定理解x,從而求得正方形ABCD的面積
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
32 |
x |
OG+GF |
DF |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
13 | 48 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com