【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,若AF=6,則BC的長為_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖一,點在線段上,圖中有三條線段、和,若其中一條線段的長度是另外一條線段長度的倍,則稱點是線段的“巧點”.
(1)填空:線段的中點 這條線段的巧點(填“是”或“不是”或“不確定是”)
(問題解決)
(2)如圖二,點和在數(shù)軸上表示的數(shù)分別是和,點是線段的巧點,求點在數(shù)軸上表示的數(shù)。
(應用拓展)
(3)在(2)的條件下,動點從點處,以每秒個單位的速度沿向點勻速運動,同時動點從點出發(fā),以每秒個單位的速度沿向點勻速運動,當其中一點到達中點時,兩個點運動同時停止,當
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某園藝公司對一塊直角三角形的花圃進行改造,測得兩直角邊長為6m、8m.現(xiàn)要將其擴建成等腰三角形,且擴充部分是以8m為直角邊的直角三角形.求擴建后的等腰三角形花圃的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AB=AC,點D為BC中點.∠MDN=90°,∠MDN繞點D旋轉,DM、DN分別與邊AB、AC交于E、F兩點.下列結論:
①△DEF是等腰直角三角形;
②AE=CF;
③△BDE≌△ADF;
④BE+CF=EF;
⑤S四邊形AEDF=AD2,
其中正確結論是_____(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C是⊙O上的三點,AB∥OC.
(1)求證:AC平分∠OAB;
(2)過點O作OE⊥AB于點E,交AC于點P.若AB=2,∠AOE=30°,求PE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李紅在學校的研究性學習小組中負責了解初一年級200名女生擲實心球的測試成績.她從中隨機調查了若干名女生的測試成績(單位:米),并將統(tǒng)計結果繪制成了如下的統(tǒng)計圖表(內容不完整).
測試成績 | 合計 | |||||
頻數(shù) | 3 | 27 | 9 | m | 1 | n |
請你結合圖表中所提供的信息,回答下列問題:
(1)表中m= , n=;
(2)請補全頻數(shù)分布直方圖;
(3)在扇形統(tǒng)計圖中, 這一組所占圓心角的度數(shù)為度;
(4)如果擲實心球的成績達到6米或6米以上為優(yōu)秀,請你估計該校初一年級女生擲實心球的成績達到優(yōu)秀的總人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)圖填空:
(1)如圖1,因為∠1=∠2,(已知)
∠2=∠3,( )
所以∠1=∠3,
所以AB∥CD.( 。
(2)如圖2,因為∠1=110°(已知)
∠1+∠2=180°,( )
所以∠2=( 。
又因為∠3=70°,(已知)
所以∠2=∠3.
所以a∥b.( 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.
(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com