9.如圖,點O為直線AB上一點,過點O作射線OC,已知∠AOC不是直角,射線OD平分∠AOC,射線OE平分∠BOC,射線OF平分∠DOE.
(1)當(dāng)∠AOC的度數(shù)在0°到90°之間時(不包含0°和90°),求∠FOB與∠DOC的度數(shù)和;
(2)若∠DOC=3∠COF,求∠AOC的度數(shù).

分析 (1)先根據(jù)射線OD平分∠AOC,∠AOD=∠COD,射線OE平分∠BOC,得∠COE=∠BOE,再根據(jù)∠AOC+∠BOC=180°,得出∠DOE=90°,由射線OF平分∠DOE,得∠DOF=∠EOF=45°,從而求得∠FOB+∠DOC的度數(shù);
(2)設(shè)∠AOD=∠COD=x°,分∠AOC為銳角和鈍角兩種情況,根據(jù)∠DOC=3∠COF,得出x的值,即可求得∠AOC的度數(shù).

解答 解:如圖1,
(1)∵射線OD平分∠AOC,
∴∠AOD=∠COD,
∵射線OE平分∠BOC,
∴∠COE=∠BOE,
∵∠AOC+∠BOC=180°,
∴∠DOE=∠DOC+∠EOC=$\frac{1}{2}$∠AOC+$\frac{1}{2}$∠BOC=90°,
∵OF平分∠DOE,
∴∠DOF=∠EOF=∠DOE=45°,
∴∠FOB+∠DOC=∠BOF+∠AOD=180°-∠DOF=180°-45°=135°;

(2)設(shè)∠AOD=∠COD=x°,則∠AOC=2x°,
由(1)的證明過程可知∠DOE=90°,∠DOF=∠EOF=45°,
∠AOC≠90°,分情況考慮如下:
①當(dāng)∠AOC為銳角時,如圖1,∠COF=∠DOF-∠COD=45°-x,
∵∠DOC=3∠COF,
∴x=3•(45°-x),
解得x=33.75°,
∴∠AOC=2x=67.5°.
②當(dāng)∠AOC為鈍角時,如圖2,∠COF=∠COD-∠DOF=x-45°,
∵∠DOC=3∠COF,
∴x=3•(x-45°),
解得x=67.5°,
∴∠AOC=2x=135°.
綜合,可得∠AOC=67.5°或135°.

點評 本題考查了角的計算和角平分線的定義,一定要注意角平分線的幾種表示方法.如:∠1=∠2,∠1=$\frac{1}{2}$∠AOB,∠AOB=2∠1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.解下列方程組:
(1)$\left\{\begin{array}{l}{2x+y=3}\\{x-y=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+3y=12}\\{2x-3y=6}\end{array}\right.$
(3)$\left\{\begin{array}{l}{3x-y=4}\\{3x+y=14}\end{array}\right.$
(4)$\left\{\begin{array}{l}{x+y=6}\\{y+2x=2}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.火車票上的車次號有兩個意義:一是數(shù)字越小表示車速越快,1-98次為特快列車,101-198次為直快列車,301-398次為普快列車,401-498次為普客列車;二是單數(shù)與雙數(shù)表示不同的行駛方向,其中單數(shù)表示從南京開出,雙數(shù)表示開往南京.根據(jù)以上信息,上海開往南京的某一直快列車的車次號可能是( 。
A.20B.119C.120D.319

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.在△OAB中,E是AB的中點,且EC、ED分別垂直O(jiān)A,OB,垂足為C、D,AC=BD,求證:OE是∠AOB的角平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.已知:如圖,AB平分∠CAD,∠C=∠D.求證:CB=DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.若有一條公共邊的兩個三角形稱為一對“共邊三角形”,則圖中以BC為公共邊的“共邊三角形”有3對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,M為反比例函數(shù)y=$\frac{k}{x}$圖象上一點,MA⊥y軸于點A,S△MAO=2時,k=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.解下列方程:
(1)12-4(x-3)=7(x+5);
(2)$\frac{x-1}{2}$+$\frac{2x+1}{5}$=$\frac{3x+1}{4}$-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,拋物線y=ax2+bx+c的圖象經(jīng)過點A(-2,0),點B(4,0),點D(2,4),與y軸交于點C,作直線BC,連接AC、CD.
(1)求拋物線的函數(shù)表達(dá)式;
(2)E是拋物線上的點,求滿足∠ECD=∠ACO的點E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案