【題目】如圖,兩個單位位于一條封閉式街道的兩旁,分別用點M,N表示,現(xiàn)準備修建一座過街天橋,橋建在何處時才能使點M到點N的路線最短?請說明理由.(注意:橋必須和街道垂直)

【答案】解: ①作NE⊥AB于點E,交CD于點F;

②在NE上截取NN'=EF;
③連接MN',交AB于點P;
④過點P作PQ⊥AB,交CD于點Q,如圖,則PQ為過街天橋應(yīng)建的位置.
理由:如圖,連接QN.
∵PQ⊥AB,NE⊥AB,∴PQ∥NE.
又∵NN'=EF,EF=PQ,
∴PQ=NN'(相當于將PQ平移到NN').
∴QN=PN'.
∴MP+PN'最短(兩點之間線段最短),PQ為定值.
∴橋建在PQ處時才能使點M到點N的路線最短.
【解析】先根據(jù)題意作出圖形畫出橋的位置,再根據(jù)平移的性質(zhì)及兩點之間線段最短證明即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為給人們的生活帶來方便,2017年興化市準備在部分城區(qū)實施公共自行車免費服務(wù).圖1是公共自行車的實物圖,圖2是公共自行車的車架示意圖,點A、D、C、E在同一條直線上,CD=35cm,DF=24cm,AF=30cm,F(xiàn)D⊥AE于點D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長;

(2)求點E到AB的距離(結(jié)果保留整數(shù)).

(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是(
A.5a2+3a2=8a4
B.a3a4=a12
C.(a+2b)2=a2+4b2
D.(a﹣b)(﹣a﹣b)=b2﹣a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形兩邊長分別為6cm、2cm,則這個三角形的周長是(  )

A. 14cm B. 10cm C. 14cm10cm D. 12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,且AD<BC,△ABC平移到△DEF的位置.

(1)指出平移的方向和平移的距離;
(2)求證:AD+BC=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABCD中,E,F(xiàn)分別在BC,AD上,若想使四邊形AFCE為平行四邊形,須添加一個條件,這個條件可以是(

AF=CF;AE=CF;③∠BAE=FCD;④∠BEA=FCE。

A. ①或② B. ②或③ C. ③或④ D. ①或③或④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅家最近新蓋了房子,室內(nèi)裝修時,木工師傅讓小紅爸爸去建材市場買一塊長3m,寬2.2m的薄木板用來做家居面,到了市場爸爸看到滿足這個尺寸的木板有點大,買還是不買爸爸猶豫了,因為他知道他家門框高只有2m,寬只有1m,他不知道這塊木板買回家后能不能完整的通過自家門框.請你替小紅爸爸解決一下難題,幫他算一算要買的木板能否通過自家門框進入室內(nèi).(備用圖可供做題參考,薄木板厚度可以忽略不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的弦,OB = 2∠B = 30°,C是弦AB上任意一點(不與點AB重合),連接CO并延長CO⊙O于點D,連接AD

1)弦長AB = ____________(結(jié)果保留根號);

2)當∠D = 20°時,求∠BOD的度數(shù);

3)當AC的長度為多少時,以點A、C、D為頂點的三角形與以B、C、O為頂點的三角形相似?請寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( )

A. x2x2x4 B. 3a3·2a26a6 C. (a2)3=-a6 D. (ab)2a2b2

查看答案和解析>>

同步練習(xí)冊答案