【題目】如圖在平面直角坐標(biāo)系中直線 x軸于A,y軸于B,C是線段AB的中點,連接OC,然后將直線OC繞點C逆時針旋轉(zhuǎn)30°x軸于點D,再過D點作直線DC1OCAB與點C1,然后過C1點繼續(xù)作直線D1C1DCx軸于點D1,并不斷重復(fù)以上步驟OCD的面積為S1,DC1D1的面積為S2,依此類推后面的三角形面積分別是S3,S4,那么S1=_____,S=S1+S2+S3+…+Sn,當(dāng)n無限大時,S的值無限接近于_____

【答案】

【解析】OOC0ABC0,DDEOCE

由直線AC的解析式可知

當(dāng)y=0,x=3,OA=3;

當(dāng)x=0y=,OB=;

故∠OBA=60°,OAB=30°;

由于CRtAOB斜邊AB的中點,所以OC=CB則△OBC是等邊三角形;

∴∠BOC=60°,DOC=DCO=30°;

OE=CE=

1ODE,OE=,DOE=30°,DE=SOCD=OCDE=;

2)易知SAOB=OAOB=,SBOC=SAOB=,SOBC0=SOCC0=SOBC=

SOC0A=SOABSOBC0==;

由題意易得OC0C、DCC1、D1C1D2都相似,ODC、OD1C1D1C2D2也都相似;設(shè)△OC0C、DCC1D1C1D2的面積和為S′,

S′:S=SOCD==32,S==×=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩地相距1500米,甲、乙兩人分別從、兩地同時出發(fā),沿著同一條直線公路相向而行.若甲以7.5/秒的速度騎自行車前進(jìn),乙以2.5/秒的速度步行,甲出發(fā)1分鐘后忘記帶東西,迅速返回去取(掉頭時間及取東西時間不計),則在乙出發(fā)經(jīng)過__________秒兩人相距100.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.

運動員甲測試成績表

測試序號

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

7

5

8

7

8

7

(1)寫出運動員甲測試成績的眾數(shù)和中位數(shù);

(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么? (參考數(shù)據(jù):三人成績的方差分別為、、)

(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結(jié)束時球回到甲手中的概率是多少?(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半.(要求:根據(jù)題意先畫出圖形,并寫出已知、求證,再證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠ABC的平分線與AC相交于點D,與⊙O過點A的切線相交于點E.

(1)∠ACB=   °,理由是:   ;

(2)猜想△EAD的形狀,并證明你的猜想;

(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小李某天上午營運時是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:

,,,,,

問:(1)將最后一位乘客送到目的地時,小李在什么位置?

2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=12,AD=18,BAD的平分線交BC于點E,交DC的延長線于點F,BGAE,垂足為G,BG=,則CEF的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各小題中,都有OE平分AOC,OF平分BOC

(1)如圖①,若點A、O、B在一條直線上,∠EOF= ;

(2)如圖②,若點A、OB不在一條直線上,∠AOB=140°,則∠EOF= ;

(3)由以上兩個問題發(fā)現(xiàn)當(dāng)∠AOC在∠BOC的外部時,∠EOF與∠AOB的數(shù)量關(guān)系是∠EOF=

(4)如圖③,OABOC的內(nèi)部,∠AOB和∠EOF還存在上述的數(shù)量關(guān)系嗎?請簡單說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在第四象限內(nèi)的矩形OABC,兩邊在坐標(biāo)軸上,一個頂點在一次函數(shù)y0.5x3的圖象上,當(dāng)點A從左向右移動時,矩形的周長與面積也隨之發(fā)生變化,設(shè)線段OA的長為m,矩形的周長為C,面積為S

1)試分別寫出C、Sm的函數(shù)解析式,它們是否為一次函數(shù)?

2)能否求出當(dāng)m取何值時,矩形的周長最大?為什么?

查看答案和解析>>

同步練習(xí)冊答案