【題目】如圖,為4×4的正方形網(wǎng)格圖,△ABC的頂點(diǎn)都在網(wǎng)格格點(diǎn)上(每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),頂點(diǎn)都在格點(diǎn)上的三角形稱(chēng)為格點(diǎn)三角形).
(1)在圖1,圖2,圖3中分別畫(huà)一個(gè)與△ABC有一公共邊且與△ABC成軸對(duì)稱(chēng)的三角形.
(2)在圖4中畫(huà)出一個(gè)滿足要求的格點(diǎn)△DEF,要求:△DEF與△ABC相似,且相似比的值為無(wú)理數(shù).(畫(huà)出一種即可)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過(guò)原點(diǎn)和,與軸交于另一點(diǎn),且對(duì)稱(chēng)軸是.
(1)求二次函數(shù)的表達(dá)式;
(2)若是上的一點(diǎn),作,交于點(diǎn),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);
(3)是軸上的點(diǎn),過(guò)作軸,與拋物線交于點(diǎn),過(guò)作軸于,是否存在點(diǎn),使以點(diǎn)、、為頂點(diǎn)的三角形與以點(diǎn)、、為頂點(diǎn)的三角形相似?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,DE⊥AD,交AB于點(diǎn)E,AE為⊙O的直徑.
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB=,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn).
(1)求拋物線的解析式.
(2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過(guò)M作MN∥y軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng).
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),,與軸交于點(diǎn),拋物線的頂點(diǎn)為,其對(duì)稱(chēng)軸與線段交于點(diǎn),垂直于軸的動(dòng)直線分別交拋物線和線段于點(diǎn)和點(diǎn),動(dòng)直線在拋物線的對(duì)稱(chēng)軸的右側(cè)(不含對(duì)稱(chēng)軸)沿軸正方向移動(dòng)到點(diǎn).
(1)求出二次函數(shù)和所在直線的表達(dá)式;
(2)在動(dòng)直線移動(dòng)的過(guò)程中,試求使四邊形為平行四邊形的點(diǎn)的坐標(biāo);
(3)連接,,在動(dòng)直線移動(dòng)的過(guò)程中,拋物線上是否存在點(diǎn),使得以點(diǎn),,為頂點(diǎn)的三角形與相似,如果存在,求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果將△ABC與△DEF各分割成兩個(gè)三角形,且△ABC所分的兩個(gè)三角形與△DEF所分的兩個(gè)三角形分別對(duì)應(yīng)相似,那么稱(chēng)△ABC與△DEF互為“近似三角形”,將每條分割線稱(chēng)為“近似分割線”.
(1)如圖1,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,∠A=30°,∠D=40°,請(qǐng)判斷這兩個(gè)三角形是否互為“近似三角形”?如果是,請(qǐng)直接在圖1中畫(huà)出一組分割線,并注明分割后所得兩個(gè)小三角形銳角的度數(shù);若不是,請(qǐng)說(shuō)明理由.
(2)判斷下列命題是真命題還是假命題,若是真命題,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)打“√”;若是假命題,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)打“×”.
①任意兩個(gè)直角三角形都是互為“近似三角形” ;
②兩個(gè)“近似三角形”只有唯一的“近似分割線” ;
③如果兩個(gè)三角形中有一個(gè)角相等,那么這兩個(gè)三角形一定是互為“近似三角形” .
(3)如圖2,已知△ABC與△DEF中,∠A=∠D=15°,∠B=45°,∠E=60°,且BC=EF=,判斷這兩個(gè)三角形是否互為“近似三角形”?如果是,請(qǐng)?jiān)趫D2中畫(huà)出不同位置的“近似分割線”,并直接分別寫(xiě)出“近似分割線”的和;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD,過(guò)點(diǎn)D作DE⊥AC,垂足為點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)如果⊙O的半徑為5,cos∠DAB=,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年的3月15日是“國(guó)際消費(fèi)者權(quán)益日”,許多家居商城都會(huì)利用這個(gè)契機(jī)進(jìn)行打折促銷(xiāo)活動(dòng).甲賣(mài)家的某款沙發(fā)每套成本為5000元,在標(biāo)價(jià)8000元的基礎(chǔ)上打9折銷(xiāo)售.
(1)現(xiàn)在甲賣(mài)家欲繼續(xù)降價(jià)吸引買(mǎi)主,問(wèn)最多降價(jià)多少元,才能使利潤(rùn)率不低于20%?
(2)據(jù)媒體爆料,有一些賣(mài)家先提高商品價(jià)格后再降價(jià)促銷(xiāo),存在欺詐行為.乙賣(mài)家也銷(xiāo)售相同的沙發(fā),其成本、標(biāo)價(jià)與甲賣(mài)家一致,以前每周可售出8套,現(xiàn)乙賣(mài)家先將標(biāo)價(jià)提高,再大幅降價(jià)元,使得這款沙發(fā)在3月15日那一天賣(mài)出的數(shù)量就比原來(lái)一周賣(mài)出的數(shù)量增加了,這樣一天的利潤(rùn)達(dá)到了50000元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=k1x(x≥0)與雙曲線y= (x>0)相交于點(diǎn)P(2,4).已知點(diǎn)A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點(diǎn)O移動(dòng)到點(diǎn)P,得到△A′PB′.過(guò)點(diǎn)A′作A′C∥y軸交雙曲線于點(diǎn)C,連接CP.
(1)求k1與k2的值;
(2)求直線PC的解析式;
(3)直接寫(xiě)出線段AB掃過(guò)的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com