【題目】如圖,為4×4的正方形網(wǎng)格圖,ABC的頂點(diǎn)都在網(wǎng)格格點(diǎn)上(每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),頂點(diǎn)都在格點(diǎn)上的三角形稱(chēng)為格點(diǎn)三角形).

1)在圖1,圖2,圖3中分別畫(huà)一個(gè)與ABC有一公共邊且與ABC成軸對(duì)稱(chēng)的三角形.

2)在圖4中畫(huà)出一個(gè)滿足要求的格點(diǎn)DEF,要求:DEFABC相似,且相似比的值為無(wú)理數(shù).(畫(huà)出一種即可)

【答案】1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

1)根據(jù)軸對(duì)稱(chēng)的性質(zhì)即可在圖1,圖2,圖3中分別畫(huà)一個(gè)與△ABC有一公共邊且與△ABC成軸對(duì)稱(chēng)的三角形;

2)根據(jù)網(wǎng)格即可在圖4中畫(huà)出一個(gè)滿足要求的格點(diǎn)△DEF,△DEF與△ABC相似,且相似比的值為無(wú)理數(shù).

解:(1)圖1,圖2,圖3中的三角形即為所求;


2)圖4DEF即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(guò)原點(diǎn),與軸交于另一點(diǎn),且對(duì)稱(chēng)軸是

1)求二次函數(shù)的表達(dá)式;

2)若上的一點(diǎn),作,交于點(diǎn),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

3軸上的點(diǎn),過(guò)軸,與拋物線交于點(diǎn),過(guò)軸于,是否存在點(diǎn),使以點(diǎn)、為頂點(diǎn)的三角形與以點(diǎn)、為頂點(diǎn)的三角形相似?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,BAC的平分線交BC于點(diǎn)D,DEAD,交AB于點(diǎn)E,AE為O的直徑

(1)判斷BC與O的位置關(guān)系,并證明你的結(jié)論;

(2)求證:ABD∽△DBE;

(3)若cosB=,AE=4,求CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣10)、B30)、C0,3)三點(diǎn).

1)求拋物線的解析式.

2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過(guò)MMNy軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng).

3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),,與軸交于點(diǎn),拋物線的頂點(diǎn)為,其對(duì)稱(chēng)軸與線段交于點(diǎn),垂直于軸的動(dòng)直線分別交拋物線和線段于點(diǎn)和點(diǎn),動(dòng)直線在拋物線的對(duì)稱(chēng)軸的右側(cè)(不含對(duì)稱(chēng)軸)沿軸正方向移動(dòng)到點(diǎn).

1)求出二次函數(shù)所在直線的表達(dá)式;

2)在動(dòng)直線移動(dòng)的過(guò)程中,試求使四邊形為平行四邊形的點(diǎn)的坐標(biāo);

3)連接,,在動(dòng)直線移動(dòng)的過(guò)程中,拋物線上是否存在點(diǎn),使得以點(diǎn),為頂點(diǎn)的三角形與相似,如果存在,求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果將ABCDEF各分割成兩個(gè)三角形,且ABC所分的兩個(gè)三角形與DEF所分的兩個(gè)三角形分別對(duì)應(yīng)相似,那么稱(chēng)ABCDEF互為“近似三角形”,將每條分割線稱(chēng)為“近似分割線”.

1)如圖1,在RtABCRtDEF中,∠C=∠F90°,∠A30°,∠D40°,請(qǐng)判斷這兩個(gè)三角形是否互為“近似三角形”?如果是,請(qǐng)直接在圖1中畫(huà)出一組分割線,并注明分割后所得兩個(gè)小三角形銳角的度數(shù);若不是,請(qǐng)說(shuō)明理由.

2)判斷下列命題是真命題還是假命題,若是真命題,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)打“√”;若是假命題,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)打“×”.

①任意兩個(gè)直角三角形都是互為“近似三角形”   ;

②兩個(gè)“近似三角形”只有唯一的“近似分割線”   ;

③如果兩個(gè)三角形中有一個(gè)角相等,那么這兩個(gè)三角形一定是互為“近似三角形”   

3)如圖2,已知ABCDEF中,AD15°,B45°,E60°,且BCEF,判斷這兩個(gè)三角形是否互為“近似三角形”?如果是,請(qǐng)?jiān)趫D2中畫(huà)出不同位置的“近似分割線”,并直接分別寫(xiě)出“近似分割線”的和;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD,過(guò)點(diǎn)DDEAC,垂足為點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F

1)求證:EF是⊙O的切線;

2)如果⊙O的半徑為5,cosDAB=,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的315日是國(guó)際消費(fèi)者權(quán)益日,許多家居商城都會(huì)利用這個(gè)契機(jī)進(jìn)行打折促銷(xiāo)活動(dòng).甲賣(mài)家的某款沙發(fā)每套成本為5000元,在標(biāo)價(jià)8000元的基礎(chǔ)上打9折銷(xiāo)售.

1)現(xiàn)在甲賣(mài)家欲繼續(xù)降價(jià)吸引買(mǎi)主,問(wèn)最多降價(jià)多少元,才能使利潤(rùn)率不低于20%?

2)據(jù)媒體爆料,有一些賣(mài)家先提高商品價(jià)格后再降價(jià)促銷(xiāo),存在欺詐行為.乙賣(mài)家也銷(xiāo)售相同的沙發(fā),其成本、標(biāo)價(jià)與甲賣(mài)家一致,以前每周可售出8套,現(xiàn)乙賣(mài)家先將標(biāo)價(jià)提高,再大幅降價(jià)元,使得這款沙發(fā)在315日那一天賣(mài)出的數(shù)量就比原來(lái)一周賣(mài)出的數(shù)量增加了,這樣一天的利潤(rùn)達(dá)到了50000元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yk1x(x≥0)與雙曲線y (x0)相交于點(diǎn)P(2,4).已知點(diǎn)A(40),B(03),連接AB,將RtAOB沿OP方向平移,使點(diǎn)O移動(dòng)到點(diǎn)P,得到APB′.過(guò)點(diǎn)AACy軸交雙曲線于點(diǎn)C,連接CP.

(1)k1k2的值;

(2)求直線PC的解析式;

(3)直接寫(xiě)出線段AB掃過(guò)的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案