【題目】將等腰直角三角形ABCABAC,∠BAC90°)和等腰直角三角形DEFDEDF,∠EDF90°)按圖1擺放,點(diǎn)DBC邊的中點(diǎn)上,點(diǎn)ADE上.

1)填空:ABEF的位置關(guān)系是   

2DEF繞點(diǎn)D按順時(shí)針?lè)较蜣D(zhuǎn)動(dòng)至圖2所示位置時(shí),DF,DE分別交ABAC于點(diǎn)P,Q,求證:∠BPD+DQC180°;

3)如圖2,在DEF繞點(diǎn)D按順時(shí)針?lè)较蜣D(zhuǎn)動(dòng)過(guò)程中,始終點(diǎn)P不到達(dá)A點(diǎn),ABC的面積記為S1,四邊形APDQ的面積記為S2,那么S1S2之間是否存在不變的數(shù)量關(guān)系?若存在,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系并證明;若不存在,請(qǐng)說(shuō)明理由.

【答案】1)平行;(2)見(jiàn)解析;(3)存在,S12S2,理由見(jiàn)解析.

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)和平行線的判定方法即可得到結(jié)論;

2)根據(jù)等腰直角三角形的性質(zhì)得到∠B=∠C45°,再根據(jù)三角形的內(nèi)角和即可得到結(jié)論;

3)連接AD,根據(jù)等腰直角三角形的性質(zhì)和余角的性質(zhì)可得BDCDAD,∠B=∠CAD,∠BDP=∠ADQ,進(jìn)而可根據(jù)ASA證明△BDP≌△ADQ,再根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.

解:(1)∵ABAC,∠BAC90°,∴∠ABD=∠C=45°,

DEDF,∠EDF90°,∴∠F=∠E45°

∴∠F=∠ ABD,∴ABEF;

故答案為:平行;

2)∵ABAC,∠BAC90°,∴∠B=∠C45°,

∵∠EDF90°,∴∠BDP+CDQ90°,

∴∠BPD+DQC360°﹣∠B﹣∠C﹣∠BDP﹣∠CDQ180°;

3S1S2之間存在不變的數(shù)量關(guān)系:S12S2.

理由:連接AD,如圖,∵ABAC,ADBC

BDCDADBC,∠B=∠C=∠CAD45°

∵∠BDP+ADP=∠ADP+ADQ90°,

∴∠BDP=∠ADQ

∴△BDP≌△ADQASA),

SABDSBPD+SAPDSADQ+SAPDS2,

又∵SADBS1,

S12S2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,的平分線相交于點(diǎn),過(guò),交于點(diǎn),交于點(diǎn).,則線段的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1的兩個(gè)長(zhǎng)方形可以按不同的形式拼成圖2和圖3兩個(gè)圖形.

1)在圖2中的陰影部分面積可表示為 ,在圖3中的陰影部分的面積可表示為 ,由這兩個(gè)陰影部分的面積得到的一個(gè)等式是(

A.

B.

C.

2)根據(jù)你得到的等式解決下面的問(wèn)題:

①計(jì)算:;

②解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC,ACB=,∠B=AC=1,BC=,AB=2,AC在直線l上,將ABC繞點(diǎn)A順時(shí)針轉(zhuǎn)到位置①可得到點(diǎn)P1,此時(shí)AP1=2;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2,此時(shí)AP2=2+;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,此時(shí)AP3=3+,按此順序繼續(xù)旋轉(zhuǎn),得到點(diǎn)P2016,則AP2016=( )

A. 2016+671B. 2016+672

C. 2017+671D. 2017+672

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直線l上擺放著三個(gè)三角形:△ABC、△HFG、△DCE,已知BC=CE,F(xiàn)、G分別是BC、CE的中點(diǎn),FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.設(shè)圖中三個(gè)四邊形的面積依次是S1,S2,S3,若S1+S3=20,則S1=_____,S2=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l//ABlAB之間的距離為2C、D是直線l上兩個(gè)動(dòng)點(diǎn)(點(diǎn)CD點(diǎn)的左側(cè)),且AB=CD=5.連接AC、BCBD,將ABC沿BC折疊得到ABC.下列說(shuō)法:①四邊形ABDC的面積始終為10;②當(dāng)AD重合時(shí),四邊形ABDC是菱形;③當(dāng)AD不重合時(shí),連接A、D,則∠CAD+BC A′=180°;④若以AC、BD為頂點(diǎn)的四邊形為矩形,則此矩形相鄰兩邊之和為37.其中正確的是( )

A. ①②③④B. ①③④C. ①②④D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.

(1)求證:四邊形BCDE為菱形;

(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長(zhǎng)方形圍欄,圍欄總長(zhǎng)50m,一邊靠墻(墻長(zhǎng)25m),

(1)求圍欄的長(zhǎng)和寬;

(2)能否圍成面積為400 的長(zhǎng)方形圍欄?如果能,求出該長(zhǎng)方形的長(zhǎng)和寬,如果不能請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A=∠B,AE=BE,點(diǎn)DAC邊上,∠1=∠2,AEBD相交于點(diǎn)O

1)求證:AECBED

2)若∠1=42°,求BDE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案