【題目】如圖,在平面直角坐標系中,以A5,1)為圓心,以2個單位長度為半徑的Ax軸于點B、C.解答下列問題:

1根據(jù)A點坐標建立平面直角坐標系;

2)將A向左平移____________個單位長度與y軸首次相切,得到A,并畫出A.此時點A的坐標為_____________.

(3)求BC的長.

【答案】(1)坐標系如圖所示,(2)3,(2,1).(3)2

【解析】

試題分析:(1)根據(jù)點A坐標畫出坐標系即可.

(2)觀察圖象即可解決問題.

(3)連接AC,過點A作ADBC于點D,利用勾股定理即可解決.

試題解析:(1)坐標系如圖所示,

(2)A向左平移3個單位長度與y軸首次相切,此時點A坐標(2,1).

(3)連接AC,過點A作ADBC于點D.

則BC=2DC,

由A(5,1)可得AD=1,

AC=2,

在RtADC中,DC=

BC=2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】對某一個函數(shù)給出如下定義:如果存在實數(shù),對于任意的函數(shù)值,都滿足,那么稱這個函數(shù)是有上界函數(shù),在所有滿足條件的中,其最小值稱為這個函數(shù)的上確界.例如圖中的函數(shù)是有上界函數(shù),其上確界是2.

(1)分別判斷函數(shù))和)是不是有上界函數(shù)?如果是有上界函數(shù),求其上確界;

(2)如果函數(shù))的上確界是,且這個函數(shù)的最小值不超過,求的取值范圍;

(3)函數(shù))是以3為上確界的有上界函數(shù),求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知2m+3n能被19整除,則2m+3+3n+3能否被19整除.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,ADBC,AD=24cm,BC=30cm,點P從A向點D以1cm/s的速度運動,到點D即停止.點Q從點C向點B以2cm/s的速度運動,到點B即停止.直線PQ將四邊形ABCD截得兩個四邊形,分別為四邊形ABQP和四邊形PQCD,則當P,Q兩點同時出發(fā),幾秒后所截得兩個四邊形中,其中一個四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】試說明不論x,y取何值,代數(shù)式x2+y2+6x-4y+15的值總是正數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程3x=15﹣2x的解是( 。

A. x=3 B. x=4 C. x=5 D. x=6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將下列各數(shù)填入相應的集合中:﹣70, ,222.55555…,3.01,+9,4.020020002…,+10%,

無理數(shù)集合: { …}

負有理數(shù)集合:{ …};

正分數(shù)集合: { …};

非負整數(shù)集合:{ …}

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,互相垂直的兩條射線OE與OF的端點O在三角板的內(nèi)部,與三角板兩條直角邊的交點分別為點D、B.

(1)填空:若∠ABO=50°,則∠ADO=  ;

(2)若DC、BP分別是∠ADO、∠ABF的角平分線,如圖1.求證:DC⊥BP;

(3)若DC、BP分別分別是∠ADE、∠ABF的角平分線,如圖2.猜想DC與BP的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,AB=AC,∠A+∠B=110°,那么∠A=______.

查看答案和解析>>

同步練習冊答案