(2013•蘭州)如圖,量角器的直徑與直角三角板ABC的斜邊AB重合,其中量角器0刻度線的端點N與點A重合,射線CP從CA處出發(fā)沿順時針方向以每秒3度的速度旋轉(zhuǎn),CP與量角器的半圓弧交于點E,第24秒,點E在量角器上對應(yīng)的讀數(shù)是
144
144
度.
分析:首先連接OE,由∠ACB=90°,易得點E,A,B,C共圓,然后由圓周角定理,求得點E在量角器上對應(yīng)的讀數(shù).
解答:解:連接OE,
∵∠ACB=90°,
∴A,B,C在以點O為圓心,AB為直徑的圓上,
∴點E,A,B,C共圓,
∵∠ACE=3×24=72°,
∴∠AOE=2∠ACE=144°.
∴點E在量角器上對應(yīng)的讀數(shù)是:144°.
故答案為:144.
點評:本題考查的是圓周角定理.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州)如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為邊,在△OAB外作等邊△OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州)如圖是一圓柱形輸水管的橫截面,陰影部分為有水部分,如果水面AB寬為8cm,水面最深地方的高度為2cm,則該輸水管的半徑為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州)如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點B的坐標(biāo)為(2,0),若拋物線y=
1
2
x2+k與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是
-2<k<
1
2
-2<k<
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州)如圖,兩條公路OA和OB相交于O點,在∠AOB的內(nèi)部有工廠C和D,現(xiàn)要修建一個貨站P,使貨站P到兩條公路OA、OB的距離相等,且到兩工廠C、D的距離相等,用尺規(guī)作出貨站P的位置.(要求:不寫作法,保留作圖痕跡,寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊答案