【題目】請(qǐng)將下列證明過(guò)程補(bǔ)充完整:
已知:如圖,點(diǎn)P在CD上,已知∠BAP+∠APD=180°,∠1=∠2
求證:∠E=∠F
證明:∵∠BAP+∠APD=180°(已知)
∴ ∥ ( )
∴∠BAP= ( )
又∵∠1=∠2(已知)
∴∠BAP﹣ = ﹣∠2
即∠3= (等式的性質(zhì))
∴AE∥PF( )
∴∠E=∠F( )
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖所示,AB//CD,點(diǎn)E在AD的延長(zhǎng)線上,∠EDC與∠B互為補(bǔ)角.
(1)問(wèn)AD,BC是否平行?請(qǐng)說(shuō)明理由;
(2)如果∠EDC=72°,∠1=∠2=2∠CAB,求∠CAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與y軸交于點(diǎn)C,點(diǎn)D(0,1),點(diǎn)P是拋物線上的動(dòng)點(diǎn).若△PCD是以CD為底的等腰三角形,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小敏從A地出發(fā)向B地行走,同時(shí)小聰從B地出發(fā)向A地行走,如圖所示,相交于點(diǎn)P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時(shí)間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是( 。
A. 3km/h和4km/h B. 3km/h和3km/h
C. 4km/h和4km/h D. 4km/h和3km/h
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長(zhǎng),交AB延長(zhǎng)線于點(diǎn)E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠A=50°,則當(dāng)∠BOD= ______ °時(shí),四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC與BD相交于點(diǎn)O,E是OD的中點(diǎn),連接AE并延長(zhǎng)交DC于點(diǎn)F,則DF:FC=( )
A.1:4
B.1:3
C.1:2
D.1:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為( )
A.2
B.8
C.2
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知:AB∥CD,點(diǎn)E,F分別在AB,CD上,且OE⊥OF.
(1)求證:∠1+∠2=90°;
(2)如圖2,分別在OE,CD上取點(diǎn)G,H,使FO平分∠CFG,EO平分∠AEH,求證:FG∥EH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所有正三角形的一邊平行于x軸,一頂點(diǎn)在y軸上,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8,…,頂點(diǎn)依次用A1、A2、A3、A4、…表示,其中A1A2與x軸、底邊A1A2與A4A5、A4A5與A7A8、…均相距一個(gè)單位,則A2017的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com