【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的5個(gè)小球,其中紅球3個(gè),黑球2個(gè).
(1)先從袋中取出m(m>1)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,填空:若A為必然事件,則m的值為 , 若A為隨機(jī)事件,則m的取值為;
(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),求這個(gè)事件的概率.

【答案】
(1)3,2
(2)解:畫樹狀圖得:

∵共有20種等可能的結(jié)果,從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè)的有12種情況,

∴從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè)的概率為: =


【解析】解:(1)∵“摸出黑球”為必然事件,

∴m=3,

∵“摸出黑球”為隨機(jī)事件,且m>1,

∴m=2;

所以答案是:3,2;

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解隨機(jī)事件的相關(guān)知識(shí),掌握在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于S的隨機(jī)事件,以及對(duì)列表法與樹狀圖法的理解,了解當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小剛同學(xué)動(dòng)手剪了如圖所示的正方形與長(zhǎng)方形紙片若干張

(1)他用1張1號(hào)、1張2號(hào)和2張3號(hào)卡片拼出一個(gè)新的圖形(如圖根據(jù)這個(gè)圖形的面積關(guān)系寫出一個(gè)你所熟悉的乘法公式,這個(gè)乘法公式是 ;

(2)如果要拼成一個(gè)長(zhǎng)為(a+2b),寬為(a+b)的大長(zhǎng)方形,則需要2號(hào)卡片 張,3號(hào)卡片 張;

(3)當(dāng)他拼成如圖所示的長(zhǎng)方形,根據(jù)6張小紙片的面積和等于打紙片(長(zhǎng)方形)的面積可以把多項(xiàng)式a2+3ab+2b2分解因式,其結(jié)果是

(4)動(dòng)手操作,請(qǐng)你依照小剛的方法,利用拼圖分解因式a2+5ab+6b2= 畫出拼圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作DE∥AC且DE= AC,連接AE交OD于點(diǎn)F,連接CE、OE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是( )

A.a>0
B.3是方程ax2+bx+c=0的一個(gè)根
C.a+b+c=0
D.當(dāng)x<1時(shí),y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,D為AB的中點(diǎn),E、F分別在AC、BC上,且DE⊥DF.

求證:AE2+BF2=EF2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線l1:y=﹣x2+2x+3與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左邊),與y軸交于點(diǎn)C,拋物線l2經(jīng)過(guò)點(diǎn)A,與x軸的另一個(gè)交點(diǎn)為E(4,0),與y軸交于點(diǎn)D(0,﹣2).

(1)求拋物線l2的解析式;
(2)點(diǎn)P為線段AB上一動(dòng)點(diǎn)(不與A、B重合),過(guò)點(diǎn)P作y軸的平行線交拋物線l1于點(diǎn)M,交拋物線l2于點(diǎn)N.
①當(dāng)四邊形AMBN的面積最大時(shí),求點(diǎn)P的坐標(biāo);
②當(dāng)CM=DN≠0時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均為銳角,點(diǎn)F是對(duì)角線BD上的一點(diǎn),EF∥AB交AD于點(diǎn)E,F(xiàn)G∥BC交DC于點(diǎn)G,四邊形EFGP是平行四邊形,給出如下結(jié)論:
①四邊形EFGP是菱形;
②△PED為等腰三角形;
③若∠ABD=90°,則△EFP≌△GPD;
④若四邊形FPDG也是平行四邊形,則BC∥AD且∠CDA=60°.
其中正確的結(jié)論的序號(hào)是(把所有正確結(jié)論的序號(hào)都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DEFABC經(jīng)過(guò)平移得到的.已知A=54°ABC=36°,則下列結(jié)論不一定成立的是(  )

A. F=90° B. BED=∠FED C. BCDF D. DFAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)定義新運(yùn)算“△”,對(duì)于任意有理數(shù)a,b,都有a△b=a2-ab+b,例如:3△5=32-3×5+5=-1,請(qǐng)根據(jù)上述知識(shí)解決問(wèn)題:

(1)化簡(jiǎn):(x-1)△(2+x);

(2)若(1)中的代數(shù)式的值大于6而小于9,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案