【題目】在中,,點(diǎn)為射線上一個(gè)動(dòng)點(diǎn)(不與重合),以為一邊在的右側(cè)作,使,,過(guò)點(diǎn)作,交直線于點(diǎn),連接.
(1)如圖①,若,則按邊分類:是 三角形,并證明;
(2)若.
①如圖②,當(dāng)點(diǎn)在線段上移動(dòng)時(shí),判斷的形狀并證明;
②當(dāng)點(diǎn)在線段的延長(zhǎng)線上移動(dòng)時(shí),是什么三角形?請(qǐng)?jiān)趫D③中畫出相應(yīng)的圖形并直接寫出結(jié)論(不必證明).
【答案】(1)等邊;證明見(jiàn)解析;(2)①△EFC為等腰三角形,證明見(jiàn)解析;②△EFC為等腰三角形.
【解析】
(1)根據(jù)題意推出∠ACB=∠ABC=60°,然后通過(guò)求證△EAC≌△DAB,結(jié)合平行線的性質(zhì),即可推出△EFC為等邊三角形;
(2)①根據(jù)(1)的推理方法,即可推出△EFC為等腰三角形;②根據(jù)題意畫出圖形,然后根據(jù)平行線的性質(zhì),通過(guò)求證△EAC≌△DAB,推出等量關(guān)系,即可推出△EFC為等腰三角形.
解:(1)如圖1,∵AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠ACB=∠ABC=60°,∠EAC=∠DAB,
∴△DAB≌△EAC,
∴∠ECA=∠B=60°,
∵EF∥BC,
∴∠EFC=∠ACB=60°,
∵在△EFC中,∠EFC=∠ECF=60°=∠CEF,
∴△EFC為等邊三角形,
故答案為:等邊;
(2)①△CEF為等腰三角形,
證明:如圖2,∵AB=AC,AD=AE,∠BAC=∠DAE,
∴∠ACB=∠ABC,∠EAC=∠DAB,
∴△EAC≌△DAB,
∴∠ECA=∠B,
∴∠ACE=∠ACB,
∵EF∥BC,
∴∠EFC=∠ACB,
∴∠EFC=∠ACE,
∴CE=FE,
∴△EFC為等腰三角形;
②如圖③,△EFC為等腰三角形.
當(dāng)點(diǎn)D在BC延長(zhǎng)線上時(shí),以AD為一邊在AD的左側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,過(guò)點(diǎn)E作BC的平行線EF,交直線AC的延長(zhǎng)線于點(diǎn)F,連接DE.
證明:∵AB=AC,AD=AE,∠BAC=∠DAE,
∴∠ACB=∠ABC,∠EAC=∠DAB,
∴△EAC≌△DAB,
∴∠ECA=∠DBA,
∴∠ECF=∠ABC,
∵EF∥BC,
∴∠AFE=∠ACB,
又∵∠ABC=∠ACB,
∴∠AFE=∠ECF,
∴EC=EF,
∴△EFC為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求作圖
在下面的網(wǎng)格中,已知△ABC的頂點(diǎn)分別落在網(wǎng)格的格點(diǎn),點(diǎn)A′、C′分別是點(diǎn)A、C兩點(diǎn)繞某一點(diǎn)O旋轉(zhuǎn)同樣的角度后的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)?jiān)谙聢D中作出旋轉(zhuǎn)中心O的位置;
(2)點(diǎn)A′是點(diǎn)A繞點(diǎn)O旋轉(zhuǎn) 度形成的;
(3)畫出△ABC繞點(diǎn)O旋轉(zhuǎn)同樣的角度后的△A′B'C’.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有長(zhǎng)度分別為3cm、4cm、5cm、8cm的4根木條
(1)李鑫同學(xué)從中任取一根,抽到“長(zhǎng)度是4cm的木條”的概率是 .
(2)在李鑫同學(xué)取出4cm的木條后,王華同學(xué)又從剩下的木條中,同時(shí)隨機(jī)取出兩根,求他們?nèi)〕龅娜緱l能構(gòu)成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△CDE都是等邊三角形,B,C,D三點(diǎn)在一條直線上,AD與BE交于點(diǎn)P,AC,BE交于點(diǎn)M,AD,CE交于點(diǎn)N,連接MN,則下列五個(gè)結(jié)論:①AD=BE;②∠BMC=∠ANE;③∠APM=60°;④AN=BM;⑤△CMN是等邊三角形.其中一定正確的是__________.(填出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華和小麗設(shè)計(jì)了A、B兩種游戲:游戲A的規(guī)則是:用3張數(shù)字分別是2、3、4的撲克牌,將牌洗勻后背面朝上放置在桌面上,第一次隨機(jī)抽出一張牌記下數(shù)字后再原樣放回,洗勻后再第二次隨機(jī)抽出一張牌記下數(shù)字,若抽出的兩張牌上的數(shù)字之和為偶數(shù),則小華獲勝;若兩數(shù)字之和為奇數(shù),則小麗獲勝.游戲B的規(guī)則是:用4張數(shù)字分別是5、6、8、8的撲克牌,將牌洗勻后背面朝上放置在桌面上,小華先隨機(jī)抽出一張牌,抽出的牌不放回,小麗從剩下的牌中再隨機(jī)抽出一張牌,若小華抽出的牌面上的數(shù)字比小麗抽出的牌面上的數(shù)字大,則小華獲勝,否則小麗獲勝.請(qǐng)你幫小麗選擇其中一種游戲,使她獲勝的可能性較大,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:
①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;&
②點(diǎn)O與O′的距離為4;
③∠AOB=150°;
④四邊形AOBO′的面積為6+3 ;
⑤S△AOC+S△AOB=6+.
其中正確的結(jié)論是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1:y=-0.5x+b分別與x軸、y軸交于A.B兩點(diǎn),與直線l2:y=kx-6交于點(diǎn)C(4,2).
(1)點(diǎn)A坐標(biāo)為(______,______),B為(______,______);
(2)在線段BC上有一點(diǎn)E,過(guò)點(diǎn)E作y軸的平行線交直線l2于點(diǎn)F,設(shè)點(diǎn)E的橫坐標(biāo)為m,當(dāng)m為何值時(shí),四邊形OBEF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).
(1)如圖1,過(guò)點(diǎn)C作⊙O的切線,與AB的延長(zhǎng)線相交于點(diǎn)P,若∠CAB=27°,求∠P的大小;
(2)如圖2,D為上一點(diǎn),且OD經(jīng)過(guò)AC的中點(diǎn)E,連接DC并延長(zhǎng),與AB的延長(zhǎng)線相交于點(diǎn)P,若∠CAB=10°,求∠P的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com