【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B地.甲車先出發(fā)勻速駛向B地,40min后,乙車出發(fā),勻速行駛一段時(shí)間后,在途中的貨站裝貨耗時(shí)半小時(shí).由于滿載貨物,為了行駛安全,速度減少了50km/h,結(jié)果與甲車同時(shí)到達(dá)B地,甲乙兩車距A地的路程()與乙車行駛時(shí)間()之間的函數(shù)圖象如圖所示,則下列說法:①②甲的速度是60km/h;③乙出發(fā)80min追上甲;④乙車在貨站裝好貨準(zhǔn)備離開時(shí),甲車距B地150km;⑤當(dāng)甲乙兩車相距30 km時(shí),甲的行駛時(shí)間為1 h、3 h、h;其中正確的是__________.
【答案】②③
【解析】
根據(jù)一次函數(shù)的性質(zhì)和該函數(shù)的圖象對(duì)各項(xiàng)進(jìn)行求解即可.
∵線段DE代表乙車在途中的貨站裝貨耗時(shí)半小時(shí),
∴a=4+0.5=4.5(小時(shí)),即①不成立;
∵40分鐘=小時(shí),
∴甲車的速度為460÷(7+)=60(千米/時(shí)),即②成立;
設(shè)乙車剛出發(fā)時(shí)的速度為x千米/時(shí),則裝滿貨后的速度為(x﹣50)千米/時(shí),
根據(jù)題意可知:4x+(7﹣4.5)(x﹣50)=460,
解得:x=90.
乙車發(fā)車時(shí),甲車行駛的路程為60×=40(千米),
乙車追上甲車的時(shí)間為40÷(90﹣60)=(小時(shí)),
小時(shí)=80分鐘,即③成立;
乙車剛到達(dá)貨站時(shí),甲車行駛的時(shí)間為(4+)小時(shí),
此時(shí)甲車離B地的距離為460﹣60×(4+)=180(千米),
即④不成立.
設(shè)當(dāng)甲乙兩車相距30 km時(shí),甲的行駛時(shí)間為x小時(shí),由題意可得
1)乙車未出發(fā)時(shí) ,即
解得
∵
∴是方程的解
2)乙車出發(fā)時(shí)間為
解得
解得
3)乙車出發(fā)時(shí)間為
解得
∵
所以不成立
4)乙車出發(fā)時(shí)間為
解得
故當(dāng)甲乙兩車相距30 km時(shí),甲的行駛時(shí)間為h、1 h、3 h、h,故⑤不成立
故答案為:②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=n與二次函數(shù)y=(x﹣2)2﹣1的圖象交于點(diǎn)B,點(diǎn)C,二次函數(shù)圖象的頂點(diǎn)為A,當(dāng)△ABC是等腰直角三角形時(shí),則n的值為( 。
A. 1B. C. 2﹣D. 2+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要在寬為22米的大道兩邊安裝路燈,路燈的燈臂CD長(zhǎng)2米,且與燈柱BC成120°角,路燈采用圓錐形燈罩,燈罩的軸線DO與燈臂CD垂直,當(dāng)燈罩的軸線DO通過公路路面的中心線時(shí)照明效果最佳,求路燈的燈柱BC高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店老板去圖書批發(fā)市場(chǎng)購買某種圖書,第一次用1200元購書若干本,并按該書定價(jià)7元出售,很快售完.由于該書暢銷,第二次購書時(shí),每本書的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購該書的數(shù)量比第一次多10本,當(dāng)按定價(jià)售出200本時(shí),出現(xiàn)滯銷,便以定價(jià)的4折售完剩余的書.
(1)第一次購書的進(jìn)價(jià)是多少元?
(2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其他因素)?若賠錢,賠多少;若賺錢,賺多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中有兩點(diǎn)、,我們定義、兩點(diǎn)間的“值”直角距離為,且滿足,其中.小靜和佳佳在解決問題:(求點(diǎn)與點(diǎn)的“1值”直角距離)時(shí),采用了兩種不同的方法:
(方法一):;
(方法二):如圖1,過點(diǎn)作軸于點(diǎn),過點(diǎn)作直線與軸交于點(diǎn),則
請(qǐng)你參照以上兩種方法,解決下列問題:
(1)已知點(diǎn),點(diǎn),則、兩點(diǎn)間的“2值”直角距離.
(2)函數(shù)的圖像如圖2所示,點(diǎn)為其圖像上一動(dòng)點(diǎn),滿足兩點(diǎn)間的“值”直角距離,且符合條件的點(diǎn)有且僅有一個(gè),求出符合條件的“值”和點(diǎn)坐標(biāo).
(3)城市的許多街道是相互垂直或平行的,因此,往往不能沿直線行走到達(dá)目的地,只能按直角拐彎的方式行走,因此,兩地之間修建垂直和平行的街道常常轉(zhuǎn)化為兩點(diǎn)間的“值”直角距離,地位于地的正東方向上,地在點(diǎn)東北方向上且相距,以為圓心修建了一個(gè)半徑為的圓形濕地公園,現(xiàn)在要在公園和地之間修建觀光步道.步道只能東西或者南北走向,并且東西方向每千米成本是20萬元,南北方向每千米的成本是10萬元,問:修建這一規(guī)光步道至少要多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6元件,該產(chǎn)品在正式投放市場(chǎng)前通過代銷點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試營(yíng)銷,售價(jià)為9元/件,工作人員對(duì)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時(shí)間每增加1天,日銷售量減少4件,
(1)請(qǐng)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)日銷售利潤(rùn)不低于960元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤(rùn)是多少元?
(3)工作人員在統(tǒng)計(jì)的過程中發(fā)現(xiàn),有連續(xù)兩天的銷售利潤(rùn)之和為1980元,請(qǐng)你算出是哪兩天.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷售量將減少20千克.
(1)現(xiàn)該商場(chǎng)要保證每天盈利6080元,同時(shí)又要顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
(2)若該商場(chǎng)單純從經(jīng)濟(jì)角度看,每千克這種水果漲價(jià)多少元,能使商場(chǎng)獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長(zhǎng)方形紙片ABCD折疊,使邊DC落在對(duì)角線AC上,折痕為CE,且D點(diǎn)落在對(duì)角線D′處.若AB=3,AD=4,則ED的長(zhǎng)為
A. B.3 C.1 D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com