【題目】如圖,OC在∠BOD內.

1)如果∠AOC和∠BOD都是直角.

①若∠BOC=60°,則∠AOD的度數(shù)是   ;

②猜想∠BOC與∠AOD的數(shù)量關系,并說明理由;

2)如果∠AOC=BOD=x°,AOD=y°,求∠BOC的度數(shù).

【答案】1①∠AOD=120°;②猜想∠BOC+AOD=180°證明見解析;2120°

【解析】試題分析:(1)①根據(jù)直角的定義先求出∠AOB,再根據(jù)角的和差關系即可得出答案;
②得到∠AOD+∠BOC=∠BOD+∠AOC,代入求出即可;
(2)類比②可得:∠AOD+∠BOC=∠BOD+∠AOC,依此代入計算即可求解.

試題解析:

1①∵∠AOC和∠BOD都是直角,∠BOC=60°

∴∠AOB=30°

∴∠AOD=120°;

②猜想∠BOC+AOD=180°

證明:∵∠BOC=90°,

∴∠AOD=BOD+AOB=90°+AOB,

∵∠AOC=90°,

∴∠AOD+BOC=BOD+AOC=90°+90°=180°;

2)類比②可得:∠AOD+BOC=BOD+AOC,

∵∠BOD=AOC=x°,AOD=y°,

∴∠BOC=2x﹣y°

故答案為:120°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一次質檢抽測中,隨機抽取某攤位20袋食鹽,測得各袋的質量分別為(單位:G):
492,496,494,495,498,497,501,502,504,496
497,503,506,508,507,492,496,500,501,499
根據(jù)以上抽測結果,任買一袋該攤位的食鹽,質量在497.5g~501.5g之間的概率為( )
A. B C
B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料: 如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據(jù)學習以上知識的經驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.

下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)①將不等式按條件進行轉化: 當x=0時,原不等式不成立;
當x>0時,原不等式可以轉化為x2+4x﹣1> ;
當x<0時,原不等式可以轉化為x2+4x﹣1< ;
②構造函數(shù),畫出圖象
設y3=x2+4x﹣1,y4= ,在同一坐標系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4= 如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(2)確定兩個函數(shù)圖象公共點的橫坐標 觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為
(3)借助圖象,寫出解集 結合(1)的討論結果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知k是不等于0的常數(shù),反比例函數(shù)與二次函數(shù)在同一坐標系的大致圖象如圖,則它們的解析式可能分別是(

A.y=﹣ ,y=﹣kx2+k
B.y= ,y=﹣kx2+k
C.y= ,y=kx2+k
D.y=﹣ ,y=﹣kx2﹣k

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,OE是∠AOD的平分線,OC是∠BOD的平分線.

(1)若∠AOB=130°,則∠COE是多少度?

(2)在(1)的條件下,若∠COD=20°,則∠BOE是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市自來水公司為了鼓勵市民節(jié)約用水,采取分段收費標準. 若某戶居民每月應繳水費y(元)與用水量x(噸)的函數(shù)圖象如圖所示,

(1)分別寫出x≤5x>5的函數(shù)解析式;

(2)觀察函數(shù)圖象,利用函數(shù)解析式,回答自來水公司采取的收費標準;

(3)若某戶居民六月交水費31元,則用水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個正方體木塊涂成紅色,然后如圖把它的棱三等分,再沿等分線把正方體切開,可以得到27個小正方體.觀察并回答下列問題:

(1)其中三面涂色的小正方體有________個,兩面涂色的小正方體有______個,各面都沒有涂色的小正方體有________個;

(2)如果將這個正方體的棱n等分,所得的小正方體中三面涂色的有_________個,各面都沒有涂色的有________個;

(3)如果要得到各面都沒有涂色的小正方體125個, 那么應該將此正方體的棱______等分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,O為直線AB上一點,OC平分∠AOE,DOE=90°,則以下結論正確的有____________.(只填序號)

①∠AOD與∠BOE互為余角;

OD平分∠COA;

③∠BOE=56°40′,則∠COE=61°40′

④∠BOE=2COD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人沿同一路線登山,圖中線段OC、折線OAB分別是甲、乙兩人登山的路程y(米)與登山時間x(分)之間的函數(shù)圖象.請根據(jù)圖象所提供的信息,解答如下問題:

(1)求甲登山的路程與登山時間之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)求乙出發(fā)后多長時間追上甲?此時乙所走的路程是多少米?

查看答案和解析>>

同步練習冊答案