【題目】在平面直角坐標(biāo)系中,已知A、B是拋物線y=ax2(a>0)上兩個不同的點,其中A在第二象限,B在第一象限,
(1)如圖1所示,當(dāng)直線AB與x軸平行,∠AOB=90°,且AB=2時,求此拋物線的解析式和A、B兩點的橫坐標(biāo)的乘積.
(2)如圖2所示,在1所求得的拋物線上,當(dāng)直線AB與x軸不平行,∠AOB仍為90°時,A、B兩點的橫坐標(biāo)的乘積是否為常數(shù)?如果是,請給予證明;如果不是,請說明理由.
(3)在2的條件下,若直線y=﹣2x﹣2分別交直線AB,y軸于點P、C,直線AB交y軸于點D,且∠BPC=∠OCP,求點P的坐標(biāo).
【答案】
(1)
【解答】解:如圖1,∵AB與x軸平行,
根據(jù)拋物線的對稱性有AE=BE=1,
∵∠AOB=90°,
∴OE=AB=1,
∴A(﹣1,1)、B(1,1),
把x=1時,y=1代入y=ax2得:a=1,
∴拋物線的解析式y(tǒng)=x2,
A、B兩點的橫坐標(biāo)的乘積為xAxB=﹣1
(2)
xAxB=﹣1為常數(shù),
如圖2,過A作AM⊥x軸于M,BN⊥x軸于N,
∴∠AMO=∠BNO=90°,
∴∠MAO+∠AOM=∠AOM+∠BON=90°,
∴∠MAO=∠BON,
∴△AMO∽△BON,
∴,
∴OMON=AMBN,
設(shè)A(xA,yA),B(xB,yB),
∵A(xA,yA),B(xB,yB)在y=x2圖象上,
∴,yA=,yB=,
∴﹣xAxB=yAyB=,
∴xAxB=﹣1為常數(shù);
(3)
設(shè)A(m,m2),B(n,n2),
如圖3所示,過點A、B分別作x軸的垂線,垂足為E、F,則易證△AEO∽△OFB.
∴,即,整理得:mn(mn+1)=0,
∵mn≠0,∴mn+1=0,即mn=﹣1.
設(shè)直線AB的解析式為y=kx+b,聯(lián)立,得:x2﹣kx﹣b=0.
∵m,n是方程的兩個根,∴mn=﹣b.
∴b=1.
∵直線AB與y軸交于點D,則OD=1.
易知C(0,﹣2),OC=2,∴CD=OC+OD=3.
∵∠BPC=∠OCP,∴PD=CD=3.
設(shè)P(a,﹣2a﹣2),過點P作PG⊥y軸于點G,則PG=﹣a,GD=OG﹣OD=﹣2a﹣3.
在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,
即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,
解得a=0(舍去)或a=,
當(dāng)a=時,﹣2a﹣2=,
∴P(,).
【解析】(1)如圖1,由AB與x軸平行,根據(jù)拋物線的對稱性有AE=BE=1,由于∠AOB=90°,得到OE=AB=1,求出A(﹣1,1)、B(1,1),把x=1時,y=1代入y=ax2得:a=1得到拋物線的解析式y(tǒng)=x2 , A、B兩點的橫坐標(biāo)的乘積為xAxB=﹣1
(2)如圖2,過A作AM⊥x軸于M,BN⊥x軸于N得到∠AMO=∠BNO=90°,證出△AMO∽△BON,得到OMON=AMBN,設(shè)A(xA , yA),B(xB yB),由于A(xA , yA),B(xB , yB)在y=x2圖象上,得到y(tǒng)A=,yB=,即可得到結(jié)論;
(3)設(shè)A(m,m2),B(n,n2).作輔助線,證明△AEO∽△OFB,得到mn=﹣1.再聯(lián)立直線m:y=kx+b與拋物線y=x2的解析式,由根與系數(shù)關(guān)系得到:mn=﹣b,所以b=1;由此得到OD、CD的長度,從而得到PD的長度;作輔助線,構(gòu)造Rt△PDG,由勾股定理求出點P的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是圓O的直徑,AB、AD是圓O的弦,且AB=AD,連結(jié)BC、DC.
(1)求證:△ABC≌△ADC;
(2)延長AB、DC交于點E,若EC=5cm,BC=3cm,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中任意兩點P1(x1 , y1)、P2(x2 , y2),稱|x1﹣x2|+|y1﹣y2|為P1、P2兩點的直角距離,記作:d(P1 , P2).P0(2,﹣3)是一定點,Q(x,y)是直線y=kx+b上的一動點,稱d(P0 , Q)的最小值為P0到直線y=kx+b的直角距離.若P(a,﹣3)到直線y=x+1的直角距離為6,則a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在剛剛閉幕的2016全國“兩會”,民生話題依然是社會焦點,某市記者為了了解百姓對“兩會民生話題”的聚焦點,隨機調(diào)查了部分市民,并對調(diào)查結(jié)果進行整理.繪制了如圖所示的統(tǒng)計圖表(不完整).
頻數(shù)分布表
組別 | 焦點話題 | 頻數(shù)(人數(shù)) |
A | 醫(yī)療衛(wèi)生 | 100 |
B | 食品安全 | m |
C | 教育住房 | 40 |
D | 社會保障 | 80 |
E | 生態(tài)環(huán)境 | n |
F | 其他 | 60 |
請根據(jù)圖表中提供的信息解答下列問題:
(1)填空:m= , n= . 扇形統(tǒng)計圖中E組,F(xiàn)組所占的百分比分別為、
(2)該市現(xiàn)有人口大約800萬,請你估計其中關(guān)注B組話題的人數(shù);
(3)若在這次接受調(diào)查的市民中,隨機抽查一人,則此人關(guān)注A組話題的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣1,1),B(﹣3,1),C(﹣1,4).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)將△ABC繞著點B順時針旋轉(zhuǎn)90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點P從點A出發(fā)以2cm/s的速度沿A→D→C運動,點P從點A出發(fā)的同時點Q從點C出發(fā),以1cm/s的速度向點B運動,當(dāng)點P到達點C時,點Q也停止運動.設(shè)點P,Q運動的時間為t秒.
(1)從運動開始,當(dāng)t取何值時,PQ∥CD?
(2)從運動開始,當(dāng)t取何值時,△PQC為直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知購買1個足球和1個籃球共需130元,購買2個足球和1個籃球共需180元.
(1)求每個足球和每個籃球的售價;
(2)如果某校計劃購買這兩種球共54個,總費用不超過4000元,問最多可買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了選拔學(xué)生參加“漢字聽寫大賽”,對九年級一班、二班各10名學(xué)生進行漢字聽寫測試.計分采用10分制(得分均取整數(shù)),成績達到6分或6分以上為及格,得到9分為優(yōu)秀,成績?nèi)绫?所示,并制作了成績分析表(表2).
表1
一班 | 5 | 8 | 8 | 9 | 8 | 10 | 10 | 8 | 5 | 5 |
二班 | 10 | 6 | 6 | 9 | 10 | 4 | 5 | 7 | 10 | 8 |
表2
班級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | 及格率 | 優(yōu)秀率 |
一班 | 7.6 | 8 | a | 3.82 | 70% | 30% |
二班 | b | 7.5 | 10 | 4.94 | 80% | 40% |
(1)在表2中,a= ,b= ;
(2)有人說二班的及格率、優(yōu)秀率均高于一班,所以二班比一班好;但也有人認(rèn)為一班成績比二班好,請你給出堅持一班成績好的兩條理由;
(3)一班、二班獲滿分的中同學(xué)性別分別是1男1女、2男1女,現(xiàn)從這兩班獲滿分的同學(xué)中各抽1名同學(xué)參加“漢字聽寫大賽”,用樹狀圖或列表法求出恰好抽到1男1女兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班抽查25名學(xué)生數(shù)學(xué)測驗成績(單位:分),頻數(shù)分布直方圖如圖:
(1)成績x在什么范圍的人數(shù)最多?是多少人?
(2)若用半徑為2的扇形圖來描述,成績在60≤x<70的人數(shù)對應(yīng)的扇形面積是多少?
(3)從相成績在50≤x<60和90≤x<100的學(xué)生中任選2人.小李成績是96分,用樹狀圖或列表法列出所有可能結(jié)果,求小李被選中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com