【題目】已知在△ABC中,∠BAC=90°,過點C的直線EF∥AB,D是BC上一點,連接AD,過點D分別作GD⊥AD,HD⊥BC,交EF和AC于點G,H,連接AG.
(1)當∠ACB=30°時,如圖1所示.
①求證:△GCD∽△AHD;
②試判斷AD與DG之間的數量關系,并說明理由;
(2)當tan∠ACB= 時,如圖2所示,請你直接寫出AD與DG之間的數量關系.
【答案】
(1)
①證明:∵∠BAC=90°,EF∥AB,
∴∠GCM=∠BAC=90°,
∵GD⊥AD,
∴∠ADM=90°,
∴∠GCA=∠ADM,
∵∠AND=∠GMC,
∴DAH=∠∠CGD,
∵∠ADH=∠CDG=90°﹣∠HDG
∴△GCD∽△AHD;
②解:由①知:△GCD∽△AHD,
∴ ,
在Rt△DHC中,
∵∠ACB=30°,
=tan30°= ,
∴ = ;
(2)
5AD=4DG,
解:由①知△GCD∽△AHD,
在Rt△DHC中,
∵tan∠ACB= ,
∴ = .
【解析】(1)①根據平行線的性質得到∠GCM=∠BAC=90°,根據垂直的定義得到∠ADM=90°,于是求得∠GCA=∠ADM,推出∠DAH=∠∠CGD,根據相似三角形的判定定理即可得到結論;②根據相似三角形的性質得到 ,根據三角函數的定義即可得到結論;(2)根據相似三角形的性質得到 ,根據tan∠ACB= ,即可得到結論.
【考點精析】掌握相似圖形和相似三角形的性質是解答本題的根本,需要知道形狀相同,大小不一定相同(放大或縮。;判定:①平行;②兩角相等;③兩邊對應成比例,夾角相等;④三邊對應成比例;對應角相等,對應邊成比例的兩個三角形叫做相似三角形.
科目:初中數學 來源: 題型:
【題目】(1)如圖1,AC=AE,∠1=∠2,∠C=∠E.求證:BC=DE.
(2)如圖2,在△ABC中,AB=AC,D為BC中點,∠BAD=30°,求∠C的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算
(1)(3x-2y)2-2x(3x-2y);
(2)(2a+1)(4a2-2a+1);
(3)先化簡,再求值:
(-x-2y)(x-2y)-(2y-x)2+(2x3-4x2y)÷2x,其 中x=-3,.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,CD為AB邊上的中線,點E、F分別在AC、BC邊上,且ED⊥DF.
(1)求證:△CDE≌△BDF;
(2)如圖2,作EG⊥AB于G,FH⊥AB于H,求證:EG+FH=CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為E,AD的垂直平分線交AB于點E,則△DEF的面積為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廠商投產一種新型電子產品,每件制造成本為18元,試銷過程中發(fā)現,每月銷售量y(萬件)與銷售單價x(元)之間的關系可以近似地看作一次函數y=-2x+100.(利潤=售價-制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數關系式;
(2)當銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據相關部門規(guī)定,這種電子產品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產品每月的最低制造成本需要多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在四邊形ABCD中,E、F、G、H分別是BC、AD、BD、AC的中點.
①求證:EF與GH互相平分;
②當四邊形ABCD的邊滿足______ 條件時,EF⊥GH.并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com