【題目】如圖,△ABC中,∠ACB=90°,AC=BC,直線l過(guò)點(diǎn)C,BD⊥l,AE⊥l,垂足分別為D、E.
(1)當(dāng)直線l不與底邊AB相交時(shí),求證:ED=AE+BD;
(2)如圖2,將直線l繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使l與底邊AB相交時(shí),請(qǐng)你探究ED、AE、BD三者之間的數(shù)量關(guān)系.
【答案】(1)證明見(jiàn)解析;
(2)ED=BD﹣AE,理由見(jiàn)解析.
【解析】(1)根據(jù)垂直定義求出∠AEC=∠BDC=90°,求出∠EAC+∠ACE=90°,
∠EAC+∠ACE=90°,得∠EAC=∠BCD,根據(jù)AAS推出△AEC≌△CDB,再根據(jù)全等三角形的性質(zhì)推出CE=BD和AE=CD即可;(2)同(1)可得證.
解:(1)∵直線l過(guò)點(diǎn)C,BD⊥l,AE⊥l,
∴∠AEC=∠BDC=90°,
∵∠ACB=90°,
∴∠EAC+∠ACE=90°,∠BCD+∠ACE=90°,
∴∠EAC=∠BCD,
在△AEC和△CDB中,
∠EAC=∠BCD,∠AEC=∠BDC,AC=BC,
∴△AEC≌△CDB(AAS),
∴CE=BD,AE=CD,
∵ED=CE+CD,
∴ED=AE+BD;
(2)ED=BD﹣AE,
理由是:∵直線l過(guò)點(diǎn)C,BD⊥l,AE⊥l,
∴∠AEC=∠BDC=90°,
∵∠ACB=90°,
∴∠EAC+∠ACE=90°,∠BCD+∠ACE=90°,
∴∠EAC=∠BCD,
在△AEC和△CDB中,
∠EAC=∠BCD,∠AEC=∠BDC,AC=BC,
∴△AEC≌△CDB(AAS),
∴CE=BD,AE=CD,
∵ED=CE﹣CD,
∴ED=BD﹣AE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)P在第二象限內(nèi),點(diǎn)P到x軸的距離是5,到y軸的距離是2,則點(diǎn)P的坐標(biāo)為( )
A. (-5,2) B. (-5,-2) C. (-2,5) D. (-2,-5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上A,B兩點(diǎn)的距離是5.若點(diǎn)A表示的數(shù)為1,則點(diǎn)B表示的數(shù)為( 。
A. 6 B. ﹣4 C. 6或﹣4 D. ﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+(2m+1)x+m(m﹣3)(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是該拋物線上不同的三點(diǎn),現(xiàn)將拋物線的對(duì)稱軸繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到直線a,過(guò)拋物線頂點(diǎn)P作PH⊥a于H.
(1)用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);
(2)若無(wú)論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個(gè)公共點(diǎn),求k的值;
(3)當(dāng)1<PH≤6時(shí),試比較y1,y2,y3之間的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE⊥AC、CF⊥AB于點(diǎn)E、F,BE與CF交于點(diǎn)D,DE=DF,連接AD.
求證:(1)∠FAD=∠EAD;
(2)BD=CD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com