如圖,在平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)B的坐標(biāo)為(4,3)。平行于對角線AC的直線m從原點(diǎn)O出發(fā),沿x軸正方向以每秒1個單位長度的速度運(yùn)動,設(shè)直線m與矩形OABC的兩邊分別交于點(diǎn)M、N,直線m運(yùn)動的時間為t(秒)。
(1)點(diǎn)A的坐標(biāo)是________,點(diǎn)C的坐標(biāo)是________;
(2)當(dāng)t=______秒或______秒時,MN=AC;
(3)設(shè)△OMN的面積為S,求S與t的函數(shù)關(guān)系式;
(4)探求(3)中得到的函數(shù)S有沒有最大值?若有,求出最大值;若沒有,要說明理由。
解:(1)(4,0);(0,3);
(2)2;6;
(3)當(dāng)0<t≤4時,OM=t,
由△OMN∽△OAC,得,
∴ON=,S=;
當(dāng)4<t<8時,
如圖,∵OD=t,∴AD= t-4,
由△DAM∽△AOC,可得AM=,∴ BM=6-,
由△BMN∽△BAC,可得BN=BM=8-t,∴CN=t-4,
∴S=矩形OABC的面積-Rt△OAM的面積- Rt△MBN的面積- Rt△NCO的面積
     =12--(8-t)(6-)-
     =
(4)S有最大值,
當(dāng)0<t≤4時,
∵拋物線S=的開口向上,在對稱軸t=0的右邊, S隨t的增大而增大,
∴ 當(dāng)t=4時,S可取到最大值=6;
當(dāng)4<t<8時,
∵拋物線S=的開口向下,它的頂點(diǎn)是(4,6),
∴ S<6,
綜上,當(dāng)t=4時,S有最大值6。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案