【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.
(1)填空:∠AOB= °,用m表示點A′的坐標:A′( , );
(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;
(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關系式;
②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.
【答案】(1)45;(m,﹣m);(2)相似;(3)①;②.
【解析】試題(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數;由旋轉的性質得,即可確定出A′坐標;
(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關系式,利用三角形相似即可得證;
(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關系式;
②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.
試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉的性質得:OD′=D′A′=m,即A′(m,﹣m);故答案為:45;m,﹣m;
(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m, m),∵A′為拋物線的頂點,∴設拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;
(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得: ,即;
②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)3m=0,整理得:am=span>,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯立拋物線與直線OA解析式得: ,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;
若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.
科目:初中數學 來源: 題型:
【題目】為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:
①年用水量不超過180m3的該市居民家庭按第一檔水價交費;
②年用水量不超過240m3的該市居民家庭按第三檔水價交費;
③該市居民家庭年用水量的中位數在150~180m3之間;
④該市居民家庭年用水量的眾數約為110m3.
其中合理的是( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時,應保證相似圖形的“接近度”相等.
(1)設菱形相鄰兩個內角的度數分別為和,將菱形的“接近度”定義為,于是,越小,菱形越接近于正方形.
①若菱形的一個內角為,則該菱形的“接近度”等于 ;
②當菱形的“接近度”等于 時,菱形是正方形.
(2)設矩形相鄰兩條邊長分別是和(),將矩形的“接近度”定義為,于是越小,矩形越接近于正方形.
你認為這種說法是否合理?若不合理,給出矩形的“接近度”一個合理定義.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為( 。
A. (,-1) B. (2,﹣1) C. (1,-) D. (﹣1,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】京張高鐵是世界上首條智能化高速鐵路,起點是北京北,終點是張家口南.建成后的京張高鐵鐵路運行里程由原來的196km縮短為174km,運行時間縮短為原來的,平均速度比原來快150千米/小時.求建成后的京張高鐵從北京北至張家口南的運行時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,點A、點B在直線l異側,以點A為圓心,AB長為半徑作弧交直線l于C、D兩點.分別以C、D為圓心,AB長為半徑作弧,兩弧在l下方交于點E,連結AE.
(1)根據題意,利用直尺和圓規(guī)補全圖形;
(2)證明:l垂直平分AE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列各變量之間是反比例關系的是( )
A. 存入銀行的利息和本金 B. 在耕地面積一定的情況下,人均占有耕地面積與人口數
C. 汽車行駛的時間與速度 D. 電線的長度與其質量
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“元旦”期間小明去永輝超市購物,恰逢永輝超市“滿1400減99元”促銷活動,小明準備提前購置一些年貨和,已知和的單價總和是100到200之間的整數,小明粗略測算了一下發(fā)現自己所購年貨總價為1305元,不能達到超市的促銷活動金額. 于是小明又購買了 、各一件,這樣就能參加超市的促銷活動,最后剛好付款1305元. 小明經仔細計算發(fā)現前面粗略測算時把 和的單價看反了,那么小明實際總共買了______件年貨.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com