如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B為正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=數(shù)學(xué)公式(m≠0)的交點(diǎn),過點(diǎn)A作AC平行于x軸,過點(diǎn)B作BC平行于y軸,AC與y軸交于點(diǎn)M,BC與x軸交于點(diǎn)N,若∠BAC=60°,AB=4,
(1)求k與m的值;
(2)將一把三角尺的直角頂點(diǎn)放在原點(diǎn)O處,繞著點(diǎn)O旋轉(zhuǎn)三角尺,三角尺的兩直角邊分別交射線CA、射線BC于點(diǎn)P、Q,設(shè)點(diǎn)P的橫坐標(biāo)為x,PQ的長為L,當(dāng)點(diǎn)p在邊AC上運(yùn)動時,求L與x的函數(shù)關(guān)系式;
(3)當(dāng)△PQC的面積為數(shù)學(xué)公式時,求點(diǎn)P的坐標(biāo).

解:(1)根據(jù)反比例函數(shù)圖形的對稱性可知點(diǎn)A、B關(guān)于原點(diǎn)對稱,
∵∠BAC=60°,AB=4,
∴∠BON=60°,OB=AB=2,
∴在△BON中,ON=OBcos60°=1,BN=OBsin60°=,
∴點(diǎn)B的坐標(biāo)是(1,),點(diǎn)A的坐標(biāo)為(-1,-),
∴k×1=,=,
解得k=,m=;

(2)∵∠QON+∠NOP=90°,∠MOP+∠NOP=90°,
∴∠QON=∠MOP,
又∵∠OMP=∠ONQ=90°,
∴△OMP∽△OQN,
=,
=,
解得QN=x,
在Rt△PCQ中,L===
∴L與x的函數(shù)關(guān)系式為L=;

(3)S△PQC=PC×CQ=(1-x)(x+)=,
整理得x2+2x=0,
解得x1=0或x2=-2,
此時點(diǎn)P的坐標(biāo)為(0,-)或(-2,-).
分析:(1)根據(jù)反比例函數(shù)的對稱性可知點(diǎn)A、B關(guān)于原點(diǎn)對稱,所以O(shè)B=2,然后在△BON中,求出ON、BN的長度,坐標(biāo)可得,再代入兩函數(shù)解析式即可求出k、m的值;
(2)先證明△OMP與△OQN相似,然后根據(jù)相似三角形對應(yīng)邊成比例列出比例式,用x表示出ON,在△PQC中,利用勾股定理即可得到L與x的函數(shù)關(guān)系式;
(3)利用三角形的面積公式,△PQC的面積=PC×CQ,然后代入數(shù)據(jù)進(jìn)行計算即可求出x的值,則點(diǎn)P的坐標(biāo)可得.
點(diǎn)評:本題考查了反比例函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,相似三角形對應(yīng)邊成比例,勾股定理,綜合性較強(qiáng),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案