1)如圖1,已知△ABC,以AB,AC為邊向△ABC外做等邊△ABD和等邊△ACE.連接BE,CD.請你完成圖形,并證明:BE=CD;(尺規(guī)作圖,不寫做法,保留作圖痕跡)
(2)如圖2,已知△ABC,以AB,AC為邊向外做正方形ABFD和正方形ACGE.連接BE,CD.BE與CD有什么數(shù)量關(guān)系?簡單說明理由.
(3)運(yùn)用(1)、(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖3,要測量池塘兩岸相對的兩點(diǎn)B,E的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=10米,AC=AE.求BE的長.
(1)尺規(guī)做圖見解析;證明過程見解析;
(2)相等;證明過程見解析;(3)10.
【解析】(1)完成圖形,如圖所示:
∵△ABD和△ACE都是等邊三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°。
∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB。
∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS)!郆E=CD。
(2)BE=CD,理由同(1):
∵四邊形ABFD和ACGE均為正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°。∴∠CAD=∠EAB!咴凇鰿AD和△EAB中,,∴△CAD≌△EAB(SAS)!郆E=CD;。
(3)由(1)、(2)的解題經(jīng)驗(yàn)可知,過A作等腰直角三角形ABD,∠BAD=90°,
則AD=AB=10米,∠ABD=45°,∴BD=20米.
連接CD,則由(2)可得BE=CD。
∵∠ABC=45°,∴∠DBC=90°。在Rt△DBC中,BC=10米,BD=20米,
根據(jù)勾股定理得:CD=(米),∴BE=CD=10米。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知正比例函數(shù)和反比例函數(shù)的圖象交于點(diǎn)A(m,-2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D的切線,交BC于點(diǎn)E.
(1)求證:EB=EC;
(2)若以點(diǎn)O、D、E、C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,在平面直角坐標(biāo)系中,將□ABCD放置在第一象限,且AB∥x軸.直線y=-x從原點(diǎn)出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2所示,那么ABCD面積為( )
A.4 B.4 C.8 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的的圓心O在格點(diǎn)上,則∠AED的正切值等于_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀材料:如圖1,在平面直角坐標(biāo)系中,A.B兩點(diǎn)的坐標(biāo)分別為A(,B,AB中點(diǎn)P的坐標(biāo)為.由,得,同理,所以AB的中點(diǎn)坐標(biāo)為(,).由勾股定理得,所以A、B兩點(diǎn)間的距離公式為AB=.
注:上述公式對A、B在平面直角坐標(biāo)系中其它位置也成立.解答下列問題:
如圖2,直線l:與拋物線交于A、B兩點(diǎn),P為AB的中點(diǎn),過P作x軸的垂線交拋物線于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo)及P、C兩點(diǎn)的坐標(biāo);
(2)連結(jié)AB、AC,求證:△ABC為直角三角形;
(3)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
定義一種新運(yùn)算:觀察下列各式:
1⊙3=1×4+3=7 ;3⊙(-1)= 3×4-1=11;5⊙4=5×4+4=24 ;4⊙(-3)= 4×4-3=13
(1)請你想一想:a⊙b=___________;
(2)若a≠b,那么a⊙b______b⊙a(bǔ)(填入 “=”或 “≠ ”) ;
(3)若a⊙(-2b) = 4,請計(jì)算 (a-b)⊙(2a+b)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com