【題目】如圖,直線MN是四邊形AMBN的對(duì)稱軸,點(diǎn)P是直線MN上的點(diǎn),給出下列判斷: ①AM=BM;②AP=BN;③∠MAP=∠MBP;④AN∥BP.其中結(jié)論正確的是:(填上序號(hào)即可)

【答案】①③
【解析】解:∵直線MN是四邊形AMBN的對(duì)稱軸, ∴點(diǎn)A與點(diǎn)B對(duì)應(yīng),
∴AM=BM,∠ANM=∠BNM,AN=BN,
∵點(diǎn)P是直線MN上的點(diǎn),
∴∠MAP=∠MBP,AP=BP,
∴①③正確,②④錯(cuò)誤,
所以答案是:①③.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解軸對(duì)稱的性質(zhì)(關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形;如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線;兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的有( )

A.長(zhǎng)度相等的弧是等弧B.相等的圓心角所對(duì)的弦相等

C.等邊三角形的外心與內(nèi)心重合D.任意三點(diǎn)可以確定一個(gè)圓

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:

1x22x30;

2(x1)(x2)2(2x)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(x2+nx+3)(x2﹣3x+m)展開(kāi)式中不含x2和x3項(xiàng),求(n﹣m)n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店在甲批發(fā)市場(chǎng)以每包m元的價(jià)格進(jìn)了40包茶葉,又在乙批發(fā)市場(chǎng)以每包n元(m>n)的價(jià)格進(jìn)了同樣的60包茶葉,如果商家以每包 元的價(jià)格賣出這種茶葉,賣完后,這家商店( )
A.盈利了
B.虧損了
C.不贏不虧
D.盈虧不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知|x+1|+(y﹣2)2=0,求﹣[(﹣3x2y2+3x2y)+3x2y2﹣3xy2)]的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件: ,使△AEH≌△CEB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究題

(1)理解證明:
如圖1,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B,C在∠MAN的邊AM,AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.證明△ABD≌△CAF;
(2)類比探究:
如圖2,點(diǎn)B,C在∠MAN的邊AM、AN上,點(diǎn)E,F(xiàn)在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的四邊相等,且面積為120cm2 , 對(duì)角線AC=24cm,則四邊形ABCD的周長(zhǎng)為(
A.52cm
B.40cm
C.39cm
D.26cm

查看答案和解析>>

同步練習(xí)冊(cè)答案