A. | $\frac{36}{5}$ | B. | 12 | C. | 9 | D. | $\frac{3\sqrt{3}}{4}$ |
分析 首先根據(jù)勾股定理求出直角邊BC的長(zhǎng),再根據(jù)三角形的面積為定值即可求出則點(diǎn)C到AB的距離.
解答 解:在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,
∵AC=9,BC=12,
∴AB=解:在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,
∵AC=9,AB=15,
∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=12,
∵S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•h,
∴h=$\frac{12×9}{15}$=$\frac{36}{5}$.
故選A.
點(diǎn)評(píng) 本題考查了勾股定理在直角三角形中的應(yīng)用,解本題的關(guān)鍵是正確的運(yùn)用勾股定理,確定AB為斜邊.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x+2x2=5x2 | B. | 2a2b-a2b=1 | C. | (-6)+(-2)=-3 | D. | (-$\frac{2}{3}$)2=$\frac{4}{9}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
圖形 | 直線(xiàn)上點(diǎn)的個(gè)數(shù) | 共有線(xiàn)段的條數(shù) | 兩者關(guān)系 |
2 | 1 | 0+1=$\frac{2×(2-1)}{2}$=1 | |
3 | 3 | 0+1+2=$\frac{3×(3-1)}{2}$=3 | |
4 | 6 | 0+1+2+3=$\frac{4×(4-1)}{2}$=6 | |
… | … | … | … |
n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{a}$=$\frac{c}va8t1m8$ | B. | $\frac{a}{c}$=$\fracrbjn2qp$ | C. | $\frac{c}{a}$=$\frac2k4gkxq$ | D. | $\frac{a}g7ngnmz$=$\frac{c}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com