線段2cm、8cm的比例中項為     cm.
4
設2和8的比例中項是x,則:x2=2×8,∴x=±4,
比例中項是線段,應舍去負數(shù),故線段2cm與8cm的比例中項為4cm.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,AB為斜靠在墻壁上的長梯,梯腳B距離墻BC長1.5米,梯上的 點D距離墻DE長為1.2米,DB=0.8米,則梯長AB為        米。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在等腰梯形ABCD中,AD∥BC,AB=DC,且BC=2.以CD為直徑作⊙O1交AD于點E,過點E作EF⊥AB于點F.建立如圖所示的平面直角坐標系,已知A、B兩點坐標分別為A(2,0)、B(0,).
小題1:求C、D兩點的坐標;

小題2:求證:EF為⊙O1的切線
小題3:線段CD上是否存在點P,使以點P為圓心,PD為半徑的⊙P與y軸相切.如果存在,請求出P點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABE和△ADC是△ABC分別沿AB、AC邊翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,則∠α的度數(shù)為(   )

A.60°        B.70°       C.75°       D.80°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

將矩形紙片沿對角線剪開,得,如圖(1-1)所示.將的頂點與點重合,并繞點按逆時針方向旋轉,使點、在同一條直線上,如圖(1-2)所示.
小題1:觀察圖可知:與BC相等的線段是______,=_______;

小題2:如圖(2),中,于點,以為直角頂點,分別以為直角邊,向外作等腰和等腰,過點作射線的垂線,垂足分別為. 求證:.

小題3:如圖(3),中,于點,以為直角頂點,分別以、為直角邊,向外作,過點作射線的垂線,垂足分別為.若,試探究之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系中,M(36,0),⊿OMN是等腰直角三角形,∠ONM=90°

(1) 直接寫出N的坐標;
(2) 正方形ABCD是⊿OMN的內接正方形,求正方形邊長;
(3) 在(2)的情況下,點P為線段AB上一點,以P為圓心,PB為半徑的圓交線段AD于點E.當B,E,N在一條直線上時,求⊙P半徑;
(4) 在(3)的情況下,線段CD上取點F,使∠EBF=45°,連結EF,判斷直線EF與⊙P是否相切.若是,寫出推理過程;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在ΔABC中,AB=AC=5,BC=6,點M為BC的中點,MN⊥AC于點N,則MN的長為(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在銳角△ABC中,AC是最短邊;以AC中點O為圓心,AC長為半徑作⊙O,交BC于E,過O作OD∥BC交⊙O于D,連結AE、AD、DC.

小題1:求證:D是弧AE的中點;
小題2:求證:∠DAO=∠B+∠BAD;
小題3:若,且AC=4,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,N、M是以O為圓心,1為半徑的圓上的兩點,B是上一動點(B不與點M、N重合),∠MON=90°,BA⊥OM于點A,BC⊥ON于點C,點D、E、F、G分別是線段OA、AB、BC、CO的中點,GF與CE相交于點P,DE與AG相交于點Q.
小題1:四邊形EPGQ             (填“是”或者“不是”)平行四邊形;
小題2:若四邊形EPGQ是矩形,求OA的值;
小題3:連結PQ,求的值.

查看答案和解析>>

同步練習冊答案