【題目】如圖1,在等邊△ABC中,E、D兩點(diǎn)分別在邊AB、BC上,BE=CD,AD、CE相交于點(diǎn)F.
(1)求∠AFE的度數(shù);
(2)過點(diǎn)A作AH⊥CE于H,求證:2FH+FD=CE;
(3)如圖2,延長CE至點(diǎn)P,連接BP,∠BPC=30°,且CF=CP,求的值.
(提示:可以過點(diǎn)A作∠KAF=60°,AK交PC于點(diǎn)K,連接KB)
【答案】(1)∠AFE=60°;(2)見解析;(3)
【解析】
(1)通過證明 得到對(duì)應(yīng)角相等,等量代換推導(dǎo)出;
(2)由(1)得到, 則在 中利用30°所對(duì)的直角邊等于斜邊的一半,等量代換可得;
(3)通過在PF上取一點(diǎn)K使得KF=AF,作輔助線證明和全等,利用對(duì)應(yīng)邊相等,等量代換得到比值.(通過將順時(shí)針旋轉(zhuǎn)60°也是一種思路.)
(1)解:如圖1中.
∵為等邊三角形,
∴AC=BC,∠BAC=∠ABC=∠ACB=60°,
在和中,
,
∴(SAS),
∴∠BCE=∠DAC,
∵∠BCE+∠ACE=60°,
∴∠DAC+∠ACE=60°,
∴∠AFE=60°.
(2)證明:如圖1中,∵AH⊥EC,
∴∠AHF=90°,
在Rt△AFH中,∵∠AFH=60°,
∴∠FAH=30°,
∴AF=2FH,
∵,
∴EC=AD,
∵AD=AF+DF=2FH+DF,
∴2FH+DF=EC.
(3)解:在PF上取一點(diǎn)K使得KF=AF,連接AK、BK,
∵∠AFK=60°,AF=KF,
∴△AFK為等邊三角形,
∴∠KAF=60°,
∴∠KAB=∠FAC,
在和中,
,
∴(SAS),
∴∠AKB=∠AFC=120°,
∴∠BKE=120°﹣60°=60°,
∵∠BPC=30°,
∴∠PBK=30°,
∴,
∴,
∵
∴ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,AE平分∠BAD,交DC的延長線于點(diǎn)E,AB=3,EF=0.8,AF=2.4.求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知正方形的邊長為1,點(diǎn)在邊上,若,且交正方形外角的平分線于點(diǎn).
(1)如圖1,若點(diǎn)是邊的中點(diǎn),是邊的中點(diǎn),連接,求證:.
(2)如圖2,若點(diǎn)在線段上滑動(dòng)(不與點(diǎn),重合).
①在點(diǎn)滑動(dòng)過程中,是否一定成立?請(qǐng)說明理由;
②在如圖所示的直角坐標(biāo)系中,當(dāng)點(diǎn)滑動(dòng)到某處時(shí),點(diǎn)恰好落在直線上,求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為,點(diǎn),,分別為,,的中點(diǎn).現(xiàn)從點(diǎn)觀察線段,當(dāng)長度為的線段(圖中的黑粗線)以每秒個(gè)單位長的速度沿線段從左向右運(yùn)動(dòng)時(shí),將阻擋部分觀察視線,在區(qū)域內(nèi)形成盲區(qū).設(shè)的左端點(diǎn)從點(diǎn)開始,運(yùn)動(dòng)時(shí)間為秒.設(shè)區(qū)域內(nèi)的盲區(qū)面積為(平方單位).
求與之間的函數(shù)關(guān)系式;
請(qǐng)簡單概括隨的變化而變化的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有七張正面分別標(biāo)有數(shù)字﹣1、﹣2、0、1、2、3、4的卡片,除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽取一張,記卡片上的數(shù)字為m,則使關(guān)于x的方程 + =2的解為正數(shù),且不等式組 無解的概率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是邊長為4的等邊三角形,點(diǎn)O在邊AB上,⊙O過點(diǎn)B且分別與邊AB,BC相交于點(diǎn)D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)當(dāng)直線DF與⊙O相切時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,AB在x軸上,以AB為直徑的半圓⊙O‘與y軸正半軸交于點(diǎn)C,連接BC,AC.CD是半圓⊙O’的切線,AD⊥CD于點(diǎn)D
(1)求證:∠CAD =∠CAB(3分)
(2)已知拋物線過A、B、C三點(diǎn),AB=10,tan∠CAD=.
① 求拋物線的解析式(3分)
② 判斷拋物線的頂點(diǎn)E是否在直線CD上,并說明理由(3分);
③ 在拋物線上是否存在一點(diǎn)P,使四邊形PBCA是直角梯形.若存在,直接寫出點(diǎn)P的坐標(biāo)(不寫求解過程);若不存在,請(qǐng)說明理由(3分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為點(diǎn)D,點(diǎn)E,BE、CD相交于點(diǎn)O.∠1=∠2,則圖中全等三角形共有( )
A. 4對(duì)B. 3對(duì)C. 2對(duì)D. 5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某童裝店在服裝銷售中發(fā)現(xiàn):進(jìn)貨價(jià)每件60元,銷售價(jià)每件100元的某童裝每天可售出20件為了迎接“六一兒童節(jié)”,童裝店決定采取適當(dāng)?shù)拇黉N措施,擴(kuò)大銷售量,增加盈利經(jīng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么每天就可多售出2件.
如果童裝店想每天銷售這種童裝盈利1050元,同時(shí)又要使顧客得到更多的實(shí)惠,那么每件童裝應(yīng)降價(jià)多少元?
每件童裝降價(jià)多少元時(shí),童裝店每天可獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com