【題目】如圖,在矩形ABCD中,AD=2AB.將矩形ABCD對折,得到折痕MN,沿著CM折疊,點D的對應(yīng)點為E,ME與BC的交點為F;再沿著MP折疊,使得AM與EM重合,折痕為MP,此時點B的對應(yīng)點為G.下列結(jié)論:①△CMP是直角三角形;②AB=BP;③PN=PG;④PM=PF;⑤若連接PE,則△PEG∽△CMD.其中正確的個數(shù)為( 。
A.5個B.4個C.3個D.2個
【答案】B
【解析】
根據(jù)折疊的性質(zhì)得到,于是得到,求得是直角三角形;設(shè)AB=x,則AD=2x,由相似三角形的性質(zhì)可得CP=x,可求BP=PG=x=PN,可判斷②③,由折疊的性質(zhì)和平行線的性質(zhì)可得∠PMF=∠FPM,可證PF=FM;由,且∠G=∠D=90°,可證△PEG∽△CMD,則可求解.
∵沿著CM折疊,點D的對應(yīng)點為E,
∴∠DMC=∠EMC,
∵再沿著MP折疊,使得AM與EM重合,折痕為MP,
∴∠AMP=∠EMP,
∵∠AMD=180°,
∴∠PME+∠CME=×180°=90°,
∴△CMP是直角三角形;故①符合題意;
∵AD=2AB,
∴設(shè)AB=x,則AD=BC=2x,
∵將矩形ABCD對折,得到折痕MN;
∴AM=DM=AD=x=BN=NC,
∴CMx,
∵∠PMC=90°=∠CNM,∠MCP=∠MCN,
∴△MCN∽△NCP,
∴CM2=CNCP,
∴3x2=x×CP,
∴CP=x,
∴
∴AB=BP,故②符合題意;
∵PN=CP﹣CN=x-x =x,
∵沿著MP折疊,使得AM與EM重合,
∴BP=PG=x,
∴PN=PG,故③符合題意;
∵AD∥BC,
∴∠AMP=∠MPC,
∵沿著MP折疊,使得AM與EM重合,
∴∠AMP=∠PMF,
∴∠PMF=∠FPM,
∴PF=FM,故④不符合題意,
如圖,
∵沿著MP折疊,使得AM與EM重合,
∴AB=GE=x,BP=PG=x,∠B=∠G=90°
∴,
∵,
∴,且∠G=∠D=90°,
∴△PEG∽△CMD,故⑤符合題意,
綜上:①②③⑤符合題意,共4個,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象和反比例函數(shù)的圖象相交于兩點.
(1)試確定一次函數(shù)與反比例函數(shù)的解析式;
(2)求的面積;
(3)結(jié)合圖象,直接寫出使成立的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,H為射線OA上一定點,,P為射線OB上一點,M為線段OH上一動點,連接PM,滿足為鈍角,以點P為中心,將線段PM順時針旋轉(zhuǎn),得到線段PN,連接ON.
(1)依題意補全圖1;
(2)求證:;
(3)點M關(guān)于點H的對稱點為Q,連接QP.寫出一個OP的值,使得對于任意的點M總有ON=QP,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生立定跳遠水平,隨機抽取該年級50名學(xué)生進行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中________,________,樣本成績的中位數(shù)落在證明見解析________范圍內(nèi);
(2)請把頻數(shù)分布直方圖補充完整;
(3)該校九年級共有1000名學(xué)生,估計該年級學(xué)生立定跳遠成績在范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提升學(xué)生的藝術(shù)素養(yǎng),某校計劃開設(shè)四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學(xué)生必須選修且只能選修一門課程,為保證計劃的有效實施,學(xué)校隨機對部分學(xué)生進行了一次調(diào)查,并將調(diào)査結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.
學(xué)生選修課程統(tǒng)計表
課程 | 人數(shù) | 所占百分比 |
聲樂 | 14 | |
舞蹈 | 8 | |
書法 | 16 | |
攝影 | ||
合計 |
根據(jù)以上信息,解答下列問題:
(1) , .
(2)求出的值并補全條形統(tǒng)計圖.
(3)該校有1500名學(xué)生,請你估計選修“聲樂”課程的學(xué)生有多少名.
(4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎(chǔ),學(xué)校準備從這4人中隨機抽取2人編排“舞蹈”在開班儀式上表演,請用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為菱形,以為直徑作交于點,連接交于點,是上的一點,且,連接.
(1)求證:.
(2)求證:是的切線.
(3)若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)θ(0°≤θ≤360°),得到矩形AEFG.
(1)當(dāng)點E在BD上時,求證:AF∥BD;
(2)當(dāng)GC=GB時,求θ;
(3)當(dāng)AB=10,BG=BC=13時,求點G到直線CD的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com