【題目】如圖,已知直線:與直線:相交于點,直線、分別交軸于、兩點,矩形的頂點、分別在、上,頂點、都在軸上,且點與點重合,那么 __________________.
【答案】8:9
【解析】
把y=0代入l1解析式求出x的值便可求出點A的坐標.令x=0代入l2的解析式求出點B的坐標.然后可求出AB的長.聯(lián)立方程組可求出交點C的坐標,繼而求出三角形ABC的面積,再利用xD=xB=8易求D點坐標.又已知yE=yD=8可求出E點坐標.故可求出DE,EF的長,即可得出矩形面積.
解:由x+=0,得x=-4.
∴A點坐標為(-4,0),
由-2x+16=0,得x=8.
∴B點坐標為(8,0),
∴AB=8-(-4)=12.
由,解得,
∴C點的坐標為(5,6),
∴S△ABC=AB6=×12×6=36.
∵點D在l1上且xD=xB=8,
∴yD=×8+=8,
∴D點坐標為(8,8),
又∵點E在l2上且yE=yD=8,
∴-2xE+16=8,
∴xE=4,
∴E點坐標為(4,8),
∴DE=8-4=4,EF=8.
∴矩形面積為:4×8=32,
∴S矩形DEFG:S△ABC=32:36=8:9.
故答案為:8:9.
科目:初中數(shù)學 來源: 題型:
【題目】y=x2+(1﹣a)x+1是關于x的二次函數(shù),當x的取值范圍是1≤x≤3時,y在x=1時取得最大值,則實數(shù)a的取值范圍是( 。
A. a≤﹣5 B. a≥5 C. a=3 D. a≥3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角頂角O在AB邊的中點上,這塊三角板繞O點旋轉,兩條直角邊始終與AC、BC邊分別相交于E、F,連接EF,則在運動過程中,△OEF與△ABC的關系是( 。
A. 一定相似 B. 當E是AC中點時相似
C. 不一定相似 D. 無法判斷
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知多項式,次數(shù)是b,3a與b互為相反數(shù),在數(shù)軸上,點A表示數(shù)a,點B表示數(shù)b.
數(shù)軸上A、B之間的距離記作,定義:設點C在數(shù)軸上對應的數(shù)為x,當時,直接寫出x的值.
有一動點P從點A出發(fā)第一次向左運動1個單位長度,然后在新的位置第二次運動,向右運動2個單位長度,在此位置第三次運動,向左運動3個單位長度按照如此規(guī)律不斷地左右運動,當運動了2019次時,求點P所對應的有理數(shù).
若小螞蟻甲從點A處以1個單位長度秒的速度向左運動,同時小螞蟻乙從點B處以2單位長度秒的速度也向左運動,一同學觀察兩只小螞蟻運動,在它們剛開始運動時,在原點O處放置一顆飯粒,乙在碰到飯粒后立即背著飯粒以原來的速度向相反的方向運動,設運動的時間為t秒,求甲、乙兩只小螞蟻到原點的距離相等時所對應的時間t.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠甲、乙兩名工人參加操作技能培訓,現(xiàn)分別從他們在培訓期間參加的若干次測試成績中隨機抽取5次,記錄如下:
甲 | 85 | 88 | 84 | 85 | 83 |
乙 | 83 | 87 | 84 | 86 | 85 |
(1)請你分別計算這兩組數(shù)據(jù)的平均數(shù);
(2)現(xiàn)要從中選派一人參加操作技能比賽,從統(tǒng)計學的角度考慮,你認為選派哪名工人參加合適?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2011貴州安順,17,4分)已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,則P點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設=y,求y關于x的函數(shù)關系式,并寫出它的定義域;
(3)當∠ABE的正切值是時,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍兩張紙片的面積之和是( 。
A. 60cm2 B. 50cm2 C. 40cm2 D. 30cm2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com